化学
人血清白蛋白
组氨酸
部分
立体化学
卟啉
共价键
肌红蛋白
光化学
氨基酸
生物化学
有机化学
作者
Akito Nakagawa,Teruyuki Komatsu,Makoto Iizuka,Eishun Tsuchida
摘要
We describe the significant difference in the O2 binding affinities of human serum albumin (HSA) incorporating 5,10,15,20-tetrakis{alpha,alpha,alpha,alpha- o-(1'-methylcyclohexanamido)phenyl}porphinatoiron(II) with a covalently linked 1-methyl-L-histidine or 3-methyl-L-histidine [HSA-FeP(1-MHis), HSA-FeP(3-MHis)]. The HSA-FeP(3-MHis) showed an extraordinarily high O2 binding affinity ( P1/2 = 0.2 Torr, 25 degrees C, pH 7.4), which is close to those of relaxed-state hemoglobin and myoglobin. However, replacement of the 3-methyl-L-histidine moiety in FeP(3-MHis) by 1-methyl-L-histidine caused a 35-fold reduction in O2 affinity; the P 1/2 value of HSA-FeP(1-MHis) (22 Torr, 37 degrees C, pH 7.4) is almost identical to that of human red blood cells. Results of kinetic studies indicate that the low O2 binding affinity of FeP(1-MHis) is predominantly manifested in the high O2 dissociation rate constant. In a toluene solution, an identical relationship in the O2 binding property was similarly observed for FeP(1-MHis) and FeP(3-MHis). The axial Fe-N(1-MHis) coordination might be restrained by steric interaction between the 4-methylene group of the histidine and the porphyrin plane.
科研通智能强力驱动
Strongly Powered by AbleSci AI