亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network

循环神经网络 计算机科学 推论 人工智能 符号 机器学习 人工神经网络 算术 数学
作者
A. Sherstinsky
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:404: 132306-132306 被引量:3731
标识
DOI:10.1016/j.physd.2019.132306
摘要

Because of their effectiveness in broad practical applications, LSTM networks have received a wealth of coverage in scientific journals, technical blogs, and implementation guides. However, in most articles, the inference formulas for the LSTM network and its parent, RNN, are stated axiomatically, while the training formulas are omitted altogether. In addition, the technique of "unrolling" an RNN is routinely presented without justification throughout the literature. The goal of this paper is to explain the essential RNN and LSTM fundamentals in a single document. Drawing from concepts in signal processing, we formally derive the canonical RNN formulation from differential equations. We then propose and prove a precise statement, which yields the RNN unrolling technique. We also review the difficulties with training the standard RNN and address them by transforming the RNN into the "Vanilla LSTM" network through a series of logical arguments. We provide all equations pertaining to the LSTM system together with detailed descriptions of its constituent entities. Albeit unconventional, our choice of notation and the method for presenting the LSTM system emphasizes ease of understanding. As part of the analysis, we identify new opportunities to enrich the LSTM system and incorporate these extensions into the Vanilla LSTM network, producing the most general LSTM variant to date. The target reader has already been exposed to RNNs and LSTM networks through numerous available resources and is open to an alternative pedagogical approach. A Machine Learning practitioner seeking guidance for implementing our new augmented LSTM model in software for experimentation and research will find the insights and derivations in this tutorial valuable as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助柔弱天德采纳,获得10
12秒前
20秒前
柔弱天德发布了新的文献求助10
25秒前
文静的翠彤完成签到 ,获得积分10
33秒前
41秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
韩祖完成签到 ,获得积分10
1分钟前
xiaozou55完成签到 ,获得积分10
1分钟前
mm发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
LArry完成签到,获得积分10
3分钟前
夜航鸟发布了新的文献求助10
3分钟前
英俊的铭应助夜航鸟采纳,获得10
4分钟前
沙洲完成签到 ,获得积分10
4分钟前
4分钟前
今后应助G1997采纳,获得10
4分钟前
诚心文博完成签到,获得积分10
4分钟前
英姑应助科研通管家采纳,获得10
5分钟前
陶醉的烤鸡完成签到 ,获得积分10
5分钟前
冬去春来完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
深情安青应助虚幻心锁采纳,获得10
6分钟前
可爱的秋发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
研友_Lk9Y9Z发布了新的文献求助10
6分钟前
虚幻心锁发布了新的文献求助10
6分钟前
6分钟前
可爱的秋完成签到,获得积分10
6分钟前
研友_Lk9Y9Z完成签到,获得积分10
6分钟前
kuoping完成签到,获得积分0
7分钟前
李振博完成签到 ,获得积分10
7分钟前
7分钟前
Hvginn完成签到,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4527891
求助须知:如何正确求助?哪些是违规求助? 3967330
关于积分的说明 12293805
捐赠科研通 3632463
什么是DOI,文献DOI怎么找? 1999355
邀请新用户注册赠送积分活动 1035561
科研通“疑难数据库(出版商)”最低求助积分说明 925286