光催化
还原(数学)
三嗪
钴
光化学
材料科学
可见光谱
共价键
催化作用
化学
无机化学
有机化学
光电子学
高分子化学
数学
几何学
作者
Jinhong Bi,Bin Xu,Long Sun,Hui-Min Huang,Shengqiong Fang,Liuyi Li,Ling Wu
标识
DOI:10.1002/cplu.201900329
摘要
Photocatalytic CO2 reduction into carbonaceous feedstock chemicals is a promising renewable energy technology to convert solar energy and greenhouse gases into chemical fuels. Here, a covalent triazine-based framework (CTF) is demonstrated as an efficient cocatalyst to reduce CO2 under visible-light irradiation. The nitrogen-rich triazine moieties in CTF contribute to CO2 adsorption, while the periodical pore structure of CTF favors the accommodation of CO2 and electron mediator. Immobilization of cobalt species onto CTF promotes the photocatalytic activity with a 44-fold enhancement over pristine CTF and the optimal CO production rate of the obtained Co/CTFs was up to 50 μmol g-1 h-1 . The results of solid-state UV-vis diffuse reflectance spectra (UV-vis DRS), CO2 adsorption and electrochemical impedance spectroscopy (EIS) illustrated that the increased activity was ascribed to the enhanced CO2 capture capacity, improved absorption of visible-light and facilitated the transfer of charge from CTF to CO2 molecules. The CTF not only serves as a substrate for active Co species, but also bridges the photosensitizer with cobalt catalytic sites for the efficient transfer of photoexcited electrons. This work highlights the capability and ease of fabricating covalent organic framework-based photocatalytic systems that are potentially useful for energy-conversion applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI