Human turnover dynamics during sleep: Statistical behavior and its modeling

双峰性 缩放比例 统计物理学 睡眠(系统调用) 区间(图论) 心理学 统计 数学 计量经济学 物理 计算机科学 组合数学 几何学 量子力学 银河系 操作系统
作者
Mitsuru Yoneyama,Yasuyuki Okuma,Hiroya Utsumi,Hiroo Terashi,Hiroshi Mitoma
出处
期刊:Physical Review E [American Physical Society]
卷期号:89 (3) 被引量:7
标识
DOI:10.1103/physreve.89.032721
摘要

Turnover is a typical intermittent body movement while asleep. Exploring its behavior may provide insights into the mechanisms and management of sleep. However, little is understood about the dynamic nature of turnover in healthy humans and how it can be modified in disease. Here we present a detailed analysis of turnover signals that are collected by accelerometry from healthy elderly subjects and age-matched patients with neurodegenerative disorders such as Parkinson's disease. In healthy subjects, the time intervals between consecutive turnover events exhibit a well-separated bimodal distribution with one mode at \ensuremath{\leqslant}10 s and the other at \ensuremath{\geqslant}100 s, whereas such bimodality tends to disappear in neurodegenerative patients. The discovery of bimodality and fine temporal structures (\ensuremath{\leqslant}10 s) is a contribution that is not revealed by conventional sleep recordings with less time resolution (\ensuremath{\approx}30 s). Moreover, we estimate the scaling exponent of the interval fluctuations, which also shows a clear difference between healthy subjects and patients. We incorporate these experimental results into a computational model of human decision making. A decision is to be made at each simulation step between two choices: to keep on sleeping or to make a turnover, the selection of which is determined dynamically by comparing a pair of random numbers assigned to each choice. This decision is weighted by a single parameter that reflects the depth of sleep. The resulting simulated behavior accurately replicates many aspects of observed turnover patterns, including the appearance or disappearance of bimodality and leads to several predictions, suggesting that the depth parameter may be useful as a quantitative measure for differentiating between normal and pathological sleep. These findings have significant clinical implications and may pave the way for the development of practical sleep assessment technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助hongyuan采纳,获得10
2秒前
科研通AI2S应助ly采纳,获得10
3秒前
七栀发布了新的文献求助10
3秒前
3秒前
打打应助可可可可汁采纳,获得10
5秒前
楼北完成签到,获得积分10
8秒前
tsuki完成签到 ,获得积分10
12秒前
小菜发布了新的文献求助10
13秒前
14秒前
搞怪的友灵完成签到,获得积分10
16秒前
缓慢的半芹完成签到,获得积分10
16秒前
16秒前
gaga完成签到,获得积分10
16秒前
17秒前
独特的鹅完成签到,获得积分10
20秒前
希望天下0贩的0应助zychaos采纳,获得10
21秒前
香蕉觅云应助yiyimama401采纳,获得10
21秒前
22秒前
森山完成签到,获得积分10
22秒前
窝恁叠发布了新的文献求助10
23秒前
hoongyan完成签到 ,获得积分10
24秒前
剑八发布了新的文献求助10
24秒前
KDC发布了新的文献求助10
25秒前
搜集达人应助默默纸飞机采纳,获得10
25秒前
CC完成签到,获得积分10
25秒前
26秒前
27秒前
28秒前
pp发布了新的文献求助10
31秒前
32秒前
zychaos发布了新的文献求助10
32秒前
32秒前
汉堡包应助shinn采纳,获得10
37秒前
南柯发布了新的文献求助20
38秒前
HZQ应助射天狼采纳,获得20
38秒前
大模型应助马上秃头采纳,获得10
38秒前
zzzz发布了新的文献求助10
39秒前
我要看文献完成签到 ,获得积分10
40秒前
41秒前
熊熊完成签到,获得积分10
42秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154375
求助须知:如何正确求助?哪些是违规求助? 3690244
关于积分的说明 11656936
捐赠科研通 3382398
什么是DOI,文献DOI怎么找? 1856103
邀请新用户注册赠送积分活动 917679
科研通“疑难数据库(出版商)”最低求助积分说明 831105