Use of Artificial Neural Networks to Predict Recurrent Lumbar Disk Herniation

医学 腰椎间盘突出症 逻辑回归 接收机工作特性 可视模拟标度 腰椎 外科 内科学
作者
Parisa Azimi,Hassan Reza Mohammadi,Edward C. Benzel,Sohrab Shahzadi,Shirzad Azhari
出处
期刊:Journal of Spinal Disorders & Techniques [Lippincott Williams & Wilkins]
卷期号:28 (3): E161-E165 被引量:34
标识
DOI:10.1097/bsd.0000000000000200
摘要

Background: The aim of this study was to develop an artificial neural network (ANN) model to predict recurrent lumbar disk herniation (LDH). Methods: An ANN model and a logistic regression model were used to predict recurrent LDH. The age, sex, duration of symptoms, smoking status, recurrent LDH, level of herniation, type of herniation, sports activity; occupational lifting, occupational driving, duration of symptoms, visual analog scale (VAS), the Zung Depression Scale (ZDS), and the Japanese Orthopaedic Association (JOA) Score, were determined as the input variables for the established ANN model. The Macnab classification, VAS, and JOA were used for outcome assessment. ANNs on data from LDH patients, who underwent surgery, were trained to predict LDH using several input variables. The patients were divided into a recurrent LDH group (R group) and a primary LDH group (P group). Sensitivity analysis was applied to identify the relevant variables. The receiver-operating characteristic curve, accuracy rate of predicting, and Hosmer-Lemeshow statistics were considered for evaluating the 2 models. Results: A total of 402 patients were categorized into training, testing, and validation data sets consisting of 201, 101, and 100 cases, respectively. The recurrence rate was 8.7%, and the median time to recurrence was 26.2 months (SD=4 mo). The VAS of leg/back pain and JOA were improved at 1-year follow-up (P<0.05) and no significant difference was observed between the 2 groups. Surgical successful outcome was categorized as: excellent, 31.1%; good, 44.3%; fair, 18.9%; and poor, 5.7% at 1-year follow-up. Compared with the logistic regression model, the ANN model was associated with superior results: accuracy rate, 94.1%; Hosmer-Lemeshow statistic, 40.2%; and area under the curve, 0.83% of patients. Conclusion: The findings show that an ANNs can be used to predict the diagnostic statues of recurrent and nonrecurrent group of LDH patients before the first or index microdiscectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XD完成签到,获得积分10
刚刚
21完成签到 ,获得积分10
1秒前
1秒前
FashionBoy应助金色年华采纳,获得10
1秒前
JJ完成签到 ,获得积分10
3秒前
LV发布了新的文献求助10
4秒前
gao发布了新的文献求助10
4秒前
科研助手6应助小丸子采纳,获得10
4秒前
4秒前
5秒前
tian发布了新的文献求助10
5秒前
6秒前
灰灰完成签到 ,获得积分10
6秒前
牵墨发布了新的文献求助10
7秒前
HEAUBOOK应助彩色的小懒虫采纳,获得10
7秒前
cristole完成签到 ,获得积分10
7秒前
李健的粉丝团团长应助US采纳,获得10
7秒前
scdd完成签到 ,获得积分10
8秒前
8秒前
充电宝应助hebhm采纳,获得10
8秒前
8秒前
优雅白凡完成签到 ,获得积分10
9秒前
Square发布了新的文献求助10
9秒前
cyc发布了新的文献求助10
10秒前
10秒前
Rong完成签到 ,获得积分10
11秒前
SS1025861发布了新的文献求助10
12秒前
12秒前
tumatto完成签到,获得积分20
13秒前
13秒前
13秒前
NexusExplorer应助祖冰绿采纳,获得10
13秒前
牵墨完成签到,获得积分10
13秒前
14秒前
15秒前
小熊发布了新的文献求助20
15秒前
Amen发布了新的文献求助10
15秒前
bkagyin应助zhang采纳,获得10
15秒前
科研通AI5应助劣根采纳,获得10
15秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790371
求助须知:如何正确求助?哪些是违规求助? 3335077
关于积分的说明 10273337
捐赠科研通 3051539
什么是DOI,文献DOI怎么找? 1674723
邀请新用户注册赠送积分活动 802757
科研通“疑难数据库(出版商)”最低求助积分说明 760853