已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Nonstationary A/B Tests: Optimal Variance Reduction, Bias Correction, and Valid Inference

估计员 非参数统计 参数统计 差异(会计) 推论 平均处理效果 对比度(视觉) 样本量测定 最小方差无偏估计量 计量经济学 三角洲法 方差减少 随机试验 数学 计算机科学 统计 经济 会计 人工智能 蒙特卡罗方法
作者
Yuhang Wu,Zeyu Zheng,Guangyu Zhang,Zuohua Zhang,Chu Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.01205
摘要

We develop an analytical framework to appropriately model and adequately analyze A/B tests in presence of nonparametric nonstationarities in the targeted business metrics. A/B tests, also known as online randomized controlled experiments, have been used at scale by data-driven enterprises to guide decisions and test innovative ideas to improve core business metrics. Meanwhile, nonstationarities, such as the time-of-day effect and the day-of-week effect, can often arise nonparametrically in key business metrics involving purchases, revenue, conversions, customer experiences, and so on. First, we develop a generic nonparametric stochastic model to capture nonstationarities in A/B test experiments, where each sample represents a visit or action associated with a time label. We build a practically relevant limiting regime to facilitate analyzing large-sample estimator performances under nonparametric nonstationarities. Second, we show that ignoring or inadequately addressing nonstationarities can cause standard A/B test estimators to have suboptimal variance and nonvanishing bias, therefore leading to loss of statistical efficiency and accuracy. We provide a new estimator that views time as a continuous strata and performs poststratification with a data-dependent number of stratification levels. Without making parametric assumptions, we prove a central limit theorem for the proposed estimator and show that the estimator attains the best achievable asymptotic variance and is asymptotically unbiased. Third, we propose a time-grouped randomization that is designed to balance treatment and control assignments at granular time scales. We show that when the time-grouped randomization is integrated to standard experimental designs to generate experiment data, simple A/B test estimators can achieve asymptotically optimal variance. A brief account of numerical experiments are conducted to illustrate the analysis. This paper was accepted by Baris Ata, stochastic models and simulation. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2022.01205 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得20
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
画船听雨眠完成签到 ,获得积分10
3秒前
4秒前
5秒前
小奎狗发布了新的文献求助10
5秒前
5秒前
彭于晏应助马克采纳,获得10
6秒前
王武聪发布了新的文献求助10
8秒前
缥缈孤鸿影完成签到 ,获得积分10
8秒前
8秒前
9秒前
义气曼寒完成签到,获得积分20
9秒前
shanshan3000发布了新的文献求助10
10秒前
changl2023发布了新的文献求助10
12秒前
帅气凝云完成签到 ,获得积分10
12秒前
打打应助疯狂的书竹采纳,获得30
19秒前
大模型应助ABCDE采纳,获得30
20秒前
21秒前
小蘑菇应助徐徐采纳,获得10
21秒前
赘婿应助杨惊蛰采纳,获得10
24秒前
Owen应助来篇nature采纳,获得10
24秒前
海鸥应助漫漫采纳,获得10
25秒前
郑总完成签到 ,获得积分10
26秒前
26秒前
yaolei完成签到,获得积分10
28秒前
ZBB完成签到 ,获得积分10
28秒前
波比冰苏打完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4302817
求助须知:如何正确求助?哪些是违规求助? 3826619
关于积分的说明 11978696
捐赠科研通 3467586
什么是DOI,文献DOI怎么找? 1901860
邀请新用户注册赠送积分活动 949534
科研通“疑难数据库(出版商)”最低求助积分说明 851584