Tailoring Chloride Solid Electrolytes for Reversible Redox

氧化还原 电解质 氯化物 化学 无机化学 化学工程 电极 有机化学 工程类 物理化学
作者
Phillip Ridley,George Duong,Sarah L. Ko,Grayson Deysher,Jin An Sam Oh,Kent J. Griffith,Ying Shirley Meng
标识
DOI:10.26434/chemrxiv-2024-v3s5m
摘要

Solid-state electrolytes enable next-generation batteries that can theoretically deliver higher energy densities while improving device safety. However, when fabricating cathodes for all-solid-state batteries, solid-state electrolytes must be combined with the active materials in high weight fractions in order to achieve sufficient ionic percolation within the cathode composite. This requirement drastically hinders the practicality of solid-state batteries as the solid-state electrolyte is conventionally designed to be electrochemically inactive and is effectively electrochemical ‘deadweight’, lowering both the gravimetric and volumetric energy density of the cell. In this work, a well-known solid-state electrolyte, Na2ZrCl6, is modified by aliovalent substitution of inactive Zr4+ cations with redox-active M5+ (M = Nb or Ta) cations to create a series of Na2–xMxZr1–xCl6 solid-solutions that possess both high ionic conductivities and active sites for Na+ storage. The Na+ intercalation mechanisms of these solid-solution materials, in addition to the NaMCl6 end-member materials, are elucidated in this work. It was discovered that both the niobium- and tantalum-containing chlorides exhibit rather high electrochemical potentials (2.2–2.8 V vs. Na9Sn4), making them ideal catholytes to pair with commonly used oxide cathode materials like NaCrO2. This synergistic pairing leads to a cathode composite with an 83–102% increase in energy density and 39–81% improvement in areal discharge capacity compared to a redox-innocent solid electrolyte. This approach highlights the benefits of designing and employing redox-active solid-state electrolytes that can reversibly intercalate charge-carrying cations, opening up a broad new avenue for solid-state electrolyte discovery and solid-state battery design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Q谈小丸子发布了新的文献求助20
1秒前
zyueyun完成签到,获得积分10
2秒前
犹豫的砖家完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
范宇轩给范宇轩的求助进行了留言
5秒前
务实老虎完成签到,获得积分10
5秒前
5秒前
xzx发布了新的文献求助10
6秒前
坚强觅珍完成签到 ,获得积分10
7秒前
hyl112发布了新的文献求助10
8秒前
超爱茶多酚完成签到,获得积分10
9秒前
醋溜爆肚儿完成签到,获得积分10
12秒前
Wu完成签到 ,获得积分10
12秒前
yyc关闭了yyc文献求助
15秒前
整齐白秋完成签到 ,获得积分10
16秒前
勇哥你好完成签到,获得积分20
20秒前
李彪完成签到 ,获得积分10
20秒前
WEILAI完成签到,获得积分10
22秒前
ajin完成签到,获得积分20
23秒前
相信相信的力量完成签到,获得积分10
24秒前
Ryujinisfine完成签到,获得积分10
28秒前
myyyyy发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
31秒前
1003来财完成签到 ,获得积分10
31秒前
平常的毛豆应助倪兴林采纳,获得10
33秒前
33秒前
xiaozou55完成签到 ,获得积分10
37秒前
跳跃从雪完成签到,获得积分10
39秒前
纯真硬币发布了新的文献求助30
39秒前
平常的毛豆应助倪兴林采纳,获得10
42秒前
GQ完成签到,获得积分10
42秒前
m(_._)m完成签到 ,获得积分0
47秒前
xinlixi完成签到,获得积分0
47秒前
纯真硬币完成签到,获得积分10
49秒前
50秒前
平常的毛豆应助倪兴林采纳,获得10
51秒前
Xy应助Panchael采纳,获得10
52秒前
zilhua完成签到,获得积分10
53秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864099
求助须知:如何正确求助?哪些是违规求助? 3406427
关于积分的说明 10649740
捐赠科研通 3130374
什么是DOI,文献DOI怎么找? 1726369
邀请新用户注册赠送积分活动 831673
科研通“疑难数据库(出版商)”最低求助积分说明 779992