机器人
翼
工程类
攀登
机制(生物学)
推进
模拟
仿生学
运动(音乐)
海洋工程
计算机科学
控制工程
人工智能
航空航天工程
结构工程
美学
哲学
认识论
作者
P.F. Ma,Haibo Qu,Wenju Liu,Xiaolei Wang,Haoqian Wang,Buqin Hu,Sheng Guo
摘要
Abstract To make the amphibious robot have a lot of functions while keeping the overall structure relatively simple, this paper proposes a multimodule bionic amphibious robot (MMBAR) inspired by the movement mode of jellyfish. The MMBAR consists of four modules, which are connected by snaps, and can be assembled quickly. The wing–leg structure suitable for swimming in the water is designed, which combines the legs and wings using a flexible hinge. Meanwhile, the integrated design principle is adopted to combine the wing–leg structure with the wheel structure to design a deformable wheel suitable for land movement. The overall structure of the MMBAR is simple, and the wing–legs can be deformed to perform a variety of functions, such as acting as a wheel for land movement, as a claw for grasping objects, and as a propulsion mechanism to power the MMBAR for swimming. Theoretical modeling and simulation analyses are conducted separately for the MMBAR on land and in water, which helps understand the movement characteristics of the MMBAR and to obtain more optimized movement parameters. In addition, we conducted experiments on the MMBAR, such as climbing slopes, climbing steps, walking on snow, swimming in water, grasping objects, and so forth, which confirm that the MMBAR possesses a strong ability to adapt to the environment. These research results add new content to the research of amphibious robots, which are expected to replace humans to fulfill more dangerous jobs.
科研通智能强力驱动
Strongly Powered by AbleSci AI