Prospective on applying machine learning in computational fluid dynamics (CFD) simulation of metallurgical reactors

计算流体力学 计算机科学 流体力学 机械工程 工程类 机械 航空航天工程 物理
作者
Yuhong Liu,Jiangshan Zhang,Shufeng Yang,Jingshe Li,Qing Liu
出处
期刊:Ironmaking & Steelmaking [Informa]
卷期号:52 (6): 636-644 被引量:2
标识
DOI:10.1177/03019233241278460
摘要

Metallurgical reactors, especially in ironmaking/steelmaking process, characterise with high-temperature turbulence, multiphase flow, mass/heat transfer and reactions. Computational fluid dynamics (CFD) simulation-based design and optimisation are of significance for efficient metallurgical performance. However, the difficulty and cost to numerically solve the nonlinear controlling equations combined with data pre/post-processing make the whole CFD simulation process time-consuming, which makes it challenging to provide in-time feedback for industrial practices. The popularisation and prosperous development of machine learning bring new opportunities for promoting CFD performance. Discussion has been made on the current research progress of applying machine learning in the whole CFD workflow including pre-processing, solving, and post-processing. Among them, the time consumed by manual pre-processing exceeds 50% of CFD tasks in general. The machine learning or parametric modelling methods can reduce pre-processing time by three orders in the estimate. The solving step is expected to be accelerated by 5 to 1000 times using machine learning. A brief review of machine learning coupled CFD is provided, as is a prospective on its development. Discussion is presented on the main functions, challenges, typical techniques and future directions of applying machine learning in CFD simulation of metallurgical reactors, for the purpose of making CFD faster, more accurate, and better visualised based on the metallurgical practices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sjr完成签到 ,获得积分10
1秒前
1秒前
yolodys完成签到,获得积分10
1秒前
1秒前
情怀应助杨宝仪采纳,获得10
1秒前
丘比特应助诺诺采纳,获得10
1秒前
浮游应助攸宁采纳,获得10
2秒前
2秒前
mmyhn应助辣辣采纳,获得20
2秒前
2秒前
高冷的小白完成签到 ,获得积分10
3秒前
李迅迅发布了新的文献求助10
4秒前
田様应助一直以来采纳,获得10
4秒前
4秒前
传奇3应助homeostasis采纳,获得10
4秒前
柔弱的书翠完成签到,获得积分10
5秒前
个性的迎夏完成签到,获得积分10
5秒前
5秒前
哎呦呦仔发布了新的文献求助10
6秒前
饭后瞌睡发布了新的文献求助10
6秒前
科研通AI6应助宇与鱼采纳,获得10
6秒前
6秒前
7秒前
7秒前
开心小猪发布了新的文献求助10
7秒前
名字长丶好记完成签到,获得积分20
7秒前
尊敬书兰完成签到,获得积分20
8秒前
8秒前
寂寞的诗云完成签到,获得积分10
8秒前
外向幻露完成签到,获得积分10
8秒前
8秒前
斯文败类应助小徐采纳,获得10
9秒前
斯文败类应助ky采纳,获得10
9秒前
9秒前
9秒前
善学以致用应助zhang采纳,获得10
10秒前
10秒前
李迅迅完成签到,获得积分10
10秒前
price发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546619
求助须知:如何正确求助?哪些是违规求助? 4632425
关于积分的说明 14626866
捐赠科研通 4574039
什么是DOI,文献DOI怎么找? 2508073
邀请新用户注册赠送积分活动 1484624
关于科研通互助平台的介绍 1455784