Rethinking Self-Supervised Semantic Segmentation: Achieving End-to-End Segmentation

分割 人工智能 计算机科学 图像分割 端到端原则 尺度空间分割 计算机视觉 模式识别(心理学)
作者
Yue Liu,Jun Zeng,X. Tao,Gang Fang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 10036-10046 被引量:1
标识
DOI:10.1109/tpami.2024.3432326
摘要

The challenge of semantic segmentation with scarce pixel-level annotations has induced many self-supervised works, however most of which essentially train an image encoder or a segmentation head that produces finer dense representations, and when performing segmentation inference they need to resort to supervised linear classifiers or traditional clustering. Segmentation by dataset-level clustering not only deviates the real-time and end-to-end inference practice, but also escalates the problem from segmenting per image to clustering all pixels at once, which results in downgraded performance. To remedy this issue, we propose a novel self-supervised semantic segmentation training and inferring paradigm where inferring is performed in an end-to-end manner. Specifically, based on our observations in probing dense representation by image-level self-supervised ViT, i.e. semantic inconsistency between patches and poor semantic quality in non-salient regions, we propose prototype-image alignment and global-local alignment with attention map constraint to train a tailored Transformer Decoder with learnable prototypes and utilize adaptive prototypes for segmentation inference per image. Extensive experiments under fully unsupervised semantic segmentation settings demonstrate the superior performance and the generalizability of our proposed method. The code is available at: https://github.com/yliu1229/AlignSeg .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
4秒前
杰king完成签到,获得积分10
6秒前
6秒前
香蕉觅云应助季乔采纳,获得10
6秒前
爆米花应助lucas采纳,获得10
7秒前
开心绫完成签到,获得积分10
7秒前
知更鸟发布了新的文献求助10
8秒前
冰魂应助舒适路人采纳,获得10
8秒前
冷酷曼容发布了新的文献求助10
9秒前
9秒前
eyou完成签到,获得积分10
10秒前
科研通AI5应助zhang狗子采纳,获得10
10秒前
jojo完成签到 ,获得积分10
10秒前
123完成签到,获得积分10
10秒前
11秒前
yong完成签到,获得积分20
13秒前
李健的粉丝团团长应助KK采纳,获得10
15秒前
安详的大雁完成签到,获得积分10
15秒前
Orange应助123采纳,获得10
16秒前
Dr.Dream完成签到,获得积分10
17秒前
所所应助动听的谷秋采纳,获得10
18秒前
18秒前
20秒前
充电宝应助舒适路人采纳,获得10
20秒前
思源应助冷酷曼容采纳,获得10
20秒前
不安夏青发布了新的文献求助10
21秒前
23秒前
自然的戒指完成签到,获得积分10
23秒前
星辰大海应助乔安娜采纳,获得30
23秒前
24秒前
26秒前
学术大王发布了新的文献求助10
27秒前
ooooozhubi关注了科研通微信公众号
27秒前
各位都是好人完成签到,获得积分10
27秒前
柯米克发布了新的文献求助10
30秒前
蜗壳发布了新的文献求助10
30秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242321
捐赠科研通 3044942
什么是DOI,文献DOI怎么找? 1671443
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372