DiffRecon: Diffusion-based CT reconstruction with cross-modal deformable fusion for DR-guided non-coplanar radiotherapy

情态动词 融合 放射治疗 计算机科学 核医学 人工智能 医学 放射科 材料科学 哲学 语言学 高分子化学
作者
Jiawei Sun,Nannan Cao,Hui Bi,Liugang Gao,Kai Xie,Tao Lin,Jianfeng Sui,Xinye Ni
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108868-108868
标识
DOI:10.1016/j.compbiomed.2024.108868
摘要

In non-coplanar radiotherapy, DR is commonly used for image guiding which needs to fuse intraoperative DR with preoperative CT. But this fusion task performs poorly, suffering from unaligned and dimensional differences between DR and CT. CT reconstruction estimated from DR could facilitate this challenge. Thus, We propose a unified generation and registration framework, named DiffRecon, for intraoperative CT reconstruction based on DR using the diffusion model. Specifically, we use the generation model for synthesizing intraoperative CTs to eliminate dimensional differences and the registration model for aligning synthetic CTs to improve reconstruction. To ensure clinical usability, CT is not only estimated from DR but the preoperative CT is also introduced as prior. We design a dual-encoder to learn prior knowledge and spatial deformation among pre- and intra-operative CT pairs and DR parallelly for 2D/3D feature deformable conversion. To calibrate the cross-modal fusion, we insert cross-attention modules to enhance the 2D/3D feature interaction between dual encoders. DiffRecon has been evaluated by both image quality metrics and dosimetric indicators. The high image synthesis metrics are with RMSE of 0.02±0.01, PSNR of 44.92±3.26, and SSIM of 0.994±0.003. The mean gamma passing rates between rCT and sCT for 1%/1 mm, 2%/2 mm and 3%/3 mm acceptance criteria are 95.2%, 99.4% and 99.9% respectively. The proposed DiffRecon can reconstruct CT accurately from a single DR projection with excellent image generation quality and dosimetric accuracy. These demonstrate that the method can be applied in non-coplanar adaptive radiotherapy workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
日尧完成签到,获得积分10
2秒前
zho发布了新的文献求助10
2秒前
繁荣的秋发布了新的文献求助10
3秒前
缥缈夏之完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
aaainon完成签到 ,获得积分10
6秒前
7秒前
7秒前
9秒前
郝绝山发布了新的文献求助10
10秒前
余姚发布了新的文献求助10
10秒前
lizhiqian2024发布了新的文献求助10
11秒前
共享精神应助HJJHJH采纳,获得10
11秒前
阿九发布了新的文献求助10
11秒前
科研通AI5应助繁荣的秋采纳,获得10
11秒前
zccjy发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
Herman_Chen完成签到,获得积分10
13秒前
iNk应助1234采纳,获得20
14秒前
上官若男应助张小明采纳,获得10
15秒前
16秒前
16秒前
16秒前
李健应助一碗冷的粥采纳,获得10
17秒前
zzzp关注了科研通微信公众号
17秒前
夜无疆发布了新的文献求助10
18秒前
18秒前
江峰发布了新的文献求助10
18秒前
ZXH完成签到,获得积分10
19秒前
太阳花发布了新的文献求助10
19秒前
19秒前
F7erxl发布了新的文献求助50
20秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784309
求助须知:如何正确求助?哪些是违规求助? 3329382
关于积分的说明 10242030
捐赠科研通 3044893
什么是DOI,文献DOI怎么找? 1671397
邀请新用户注册赠送积分活动 800254
科研通“疑难数据库(出版商)”最低求助积分说明 759298