已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-source domain adaptation based tempo-spatial convolution network for cross-subject EEG classification in RSVP task

计算机科学 分类器(UML) 模式识别(心理学) 人工智能 特征提取 卷积(计算机科学) 可视化快速呈现 特征(语言学) 人工神经网络 感知 神经科学 生物 哲学 语言学
作者
Xuepu Wang,Bowen Li,Yanfei Lin,Xiaorong Gao
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016025-016025 被引量:2
标识
DOI:10.1088/1741-2552/ad2710
摘要

Abstract Objective. Many subject-dependent methods were proposed for electroencephalogram (EEG) classification in rapid serial visual presentation (RSVP) task, which required a large amount of data from new subject and were time-consuming to calibrate system. Cross-subject classification can realize calibration reduction or zero calibration. However, cross-subject classification in RSVP task is still a challenge. Approach. This study proposed a multi-source domain adaptation based tempo-spatial convolution (MDA-TSC) network for cross-subject RSVP classification. The proposed network consisted of three modules. First, the common feature extraction with multi-scale tempo-spatial convolution was constructed to extract domain-invariant features across all subjects, which could improve generalization of the network. Second, the multi-branch domain-specific feature extraction and alignment was conducted to extract and align domain-specific feature distributions of source and target domains in pairs, which could consider feature distribution differences among source domains. Third, the domain-specific classifier was exploited to optimize the network through loss functions and obtain prediction for the target domain. Main results. The proposed network was evaluated on the benchmark RSVP dataset, and the cross-subject classification results showed that the proposed MDA-TSC network outperformed the reference methods. Moreover, the effectiveness of the MDA-TSC network was verified through both ablation studies and visualization. Significance. The proposed network could effectively improve cross-subject classification performance in RSVP task, and was helpful to reduce system calibration time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助111采纳,获得10
刚刚
火星上凡霜完成签到,获得积分10
2秒前
3秒前
4秒前
上官若男应助山楂采纳,获得30
4秒前
hyggg发布了新的文献求助10
5秒前
5566妈发布了新的文献求助10
6秒前
陈炜smile发布了新的文献求助10
8秒前
桐桐应助luyu采纳,获得10
9秒前
11秒前
11秒前
wanci应助Cecilia采纳,获得10
11秒前
南街楼应助jiafang采纳,获得10
11秒前
11秒前
石东明完成签到 ,获得积分10
14秒前
yayoi完成签到,获得积分10
15秒前
汉堡包应助求论文采纳,获得30
16秒前
天才包完成签到,获得积分10
17秒前
挽晨完成签到 ,获得积分10
18秒前
zytzhong发布了新的文献求助10
18秒前
姚小楠完成签到 ,获得积分10
20秒前
20秒前
ms发布了新的文献求助10
20秒前
21秒前
23秒前
科研通AI6应助汉堡肉采纳,获得10
24秒前
斧王应助科研通管家采纳,获得10
25秒前
吴彦祖应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
吴彦祖应助科研通管家采纳,获得10
25秒前
一般的完成签到,获得积分10
25秒前
浮游应助科研通管家采纳,获得10
26秒前
吴彦祖应助科研通管家采纳,获得10
26秒前
今后应助科研通管家采纳,获得10
26秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
吴彦祖应助科研通管家采纳,获得10
26秒前
无极微光应助科研通管家采纳,获得20
26秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454644
求助须知:如何正确求助?哪些是违规求助? 4562040
关于积分的说明 14284232
捐赠科研通 4485847
什么是DOI,文献DOI怎么找? 2457056
邀请新用户注册赠送积分活动 1447689
关于科研通互助平台的介绍 1422913