亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Capturing complex hand movements and object interactions using machine learning-powered stretchable smart textile gloves

人工智能 计算机科学 计算机视觉 机器人学 稳健性(进化) 人机交互 机器人 生物化学 化学 基因
作者
Arvin Tashakori,Zenan Jiang,Amir Servati,S. Soltanian,Harishkumar Narayana,Katherine Le,Caroline Nakayama,Chieh-ling Yang,Z. Jane Wang,Janice J. Eng,Peyman Servati
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:6 (1): 106-118 被引量:48
标识
DOI:10.1038/s42256-023-00780-9
摘要

Accurate real-time tracking of dexterous hand movements has numerous applications in human–computer interaction, the metaverse, robotics and tele-health. Capturing realistic hand movements is challenging because of the large number of articulations and degrees of freedom. Here we report accurate and dynamic tracking of articulated hand and finger movements using stretchable, washable smart gloves with embedded helical sensor yarns and inertial measurement units. The sensor yarns have a high dynamic range, responding to strains as low as 0.005% and as high as 155%, and show stability during extensive use and washing cycles. We use multi-stage machine learning to report average joint-angle estimation root mean square errors of 1.21° and 1.45° for intra- and inter-participant cross-validation, respectively, matching the accuracy of costly motion-capture cameras without occlusion or field-of-view limitations. We report a data augmentation technique that enhances robustness to noise and variations of sensors. We demonstrate accurate tracking of dexterous hand movements during object interactions, opening new avenues of applications, including accurate typing on a mock paper keyboard, recognition of complex dynamic and static gestures adapted from American Sign Language, and object identification. Accurate real-time tracking of dexterous hand movements and interactions has applications in human–computer interaction, the metaverse, robotics and tele-health. Capturing realistic hand movements is challenging due to the large number of articulations and degrees of freedom. Tashakori and colleagues report accurate and dynamic tracking of articulated hand and finger movements using machine-learning powered stretchable, washable smart gloves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
37秒前
量子星尘发布了新的文献求助10
44秒前
今后应助科研通管家采纳,获得10
47秒前
1分钟前
1分钟前
林小鹿完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Wei发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Omni发布了新的文献求助20
2分钟前
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
研友_892kOL发布了新的文献求助10
3分钟前
3分钟前
酷波er应助Omni采纳,获得20
4分钟前
爆米花应助过氧化氢采纳,获得10
4分钟前
4分钟前
4分钟前
科研通AI5应助我是废物采纳,获得10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
Virtual应助科研通管家采纳,获得10
4分钟前
4分钟前
我是废物发布了新的文献求助10
4分钟前
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
过氧化氢发布了新的文献求助10
5分钟前
5分钟前
5分钟前
过氧化氢完成签到,获得积分10
5分钟前
5分钟前
5分钟前
无限晓蓝完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270199
求助须知:如何正确求助?哪些是违规求助? 3800758
关于积分的说明 11910865
捐赠科研通 3447612
什么是DOI,文献DOI怎么找? 1890991
邀请新用户注册赠送积分活动 941763
科研通“疑难数据库(出版商)”最低求助积分说明 845840