3D real-time dynamic path planning for UAV based on improved interfered fluid dynamical system and artificial neural network

人工神经网络 路径(计算) 样品(材料) 运动规划 人工智能 避障 工程类 计算机科学 特征(语言学) 数据挖掘 控制工程 实时计算 机器人 移动机器人 哲学 化学 程序设计语言 色谱法 语言学
作者
Yanbiao Niu,Xuefeng Yan,Yongzhen Wang,Yanzhao Niu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:59: 102306-102306 被引量:30
标识
DOI:10.1016/j.aei.2023.102306
摘要

In complex and volatile unknown flight environments, the limited environmental information obtained by sensors in the face of sudden dynamic and static obstacles makes it extremely challenging for unmanned aerial vehicles (UAVs) to obtain a safe and efficient path to avoid obstacles and reach a designated target point. Therefore, a real-time dynamic path planning method based on an improved interfered fluid dynamical system (IFDS) and artificial neural network (ANN) is proposed to enhance path quality and computational efficiency. Firstly, to address the issue of insufficient sample quality and quantity, IFDS is employed as the fundamental method for path planning to simulate and generate an adequate amount of sample data for the ANN training. Then, an enhanced sand cat swarm optimization algorithm (ESCSO) with an adaptive social neighborhood search mechanism and Lévy flight strategy is proposed to improve the sample quality. Secondly, the information between the UAV and the target points and obstacles is extracted from the sample data as the input for the network, the parameters of the IFDS are used as the feature extraction at the output of the network, and the ESCSO is applied to optimize the weights and biases of the ANN, enabling offline training of the neural network. Finally, the trained neural network is utilized to dynamically output IFDS parameters based on the real-time environmental information obtained from the sensors, enabling the generation of real-time obstacle avoidance paths. Experimental results in a series of complex simulated environments demonstrate that the proposed method outperforms other algorithms in terms of path quality and meets real-time requirements. It provides excellent obstacle avoidance characteristics for the UAV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
1秒前
3秒前
摆不烂发布了新的文献求助10
8秒前
lulu完成签到 ,获得积分10
9秒前
11秒前
12秒前
13秒前
lzcnextdoor发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
ee完成签到,获得积分10
17秒前
swi初发布了新的文献求助10
18秒前
努力发自然完成签到 ,获得积分10
18秒前
花痴的电灯泡完成签到,获得积分10
18秒前
19秒前
乐乐应助钱念波采纳,获得10
20秒前
Joanne完成签到 ,获得积分10
20秒前
lzcnextdoor完成签到,获得积分10
22秒前
28秒前
开放的听枫完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助20
31秒前
32秒前
重要手机发布了新的文献求助10
32秒前
向日葵发布了新的文献求助10
34秒前
35秒前
奋斗的凡完成签到 ,获得积分10
35秒前
zoudegui完成签到,获得积分10
36秒前
36秒前
Jasper应助科研通管家采纳,获得10
36秒前
SZ应助科研通管家采纳,获得10
36秒前
昏睡的蟠桃应助科研通管家采纳,获得200
36秒前
清脆惜寒应助科研通管家采纳,获得10
36秒前
带头大哥应助科研通管家采纳,获得200
36秒前
CipherSage应助科研通管家采纳,获得10
36秒前
popvich应助科研通管家采纳,获得20
37秒前
英姑应助科研通管家采纳,获得10
37秒前
Hello应助科研通管家采纳,获得10
37秒前
lgq12697应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
CipherSage应助科研通管家采纳,获得10
37秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Research Design: Qualitative, Quantitative, and Mixed Methods Approaches Sixth Edition 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4642098
求助须知:如何正确求助?哪些是违规求助? 4034083
关于积分的说明 12477604
捐赠科研通 3722274
什么是DOI,文献DOI怎么找? 2054438
邀请新用户注册赠送积分活动 1085535
科研通“疑难数据库(出版商)”最低求助积分说明 967418