Applications of artificial neural network based battery management systems: A literature review

人工神经网络 计算机科学 电池(电) 工程类 可靠性工程 系统工程 人工智能 功率(物理) 物理 量子力学
作者
Mehmet Kurucan,Mete Özbaltan,Zekí Yetgín,Alkan Alkaya
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:192: 114262-114262 被引量:154
标识
DOI:10.1016/j.rser.2023.114262
摘要

Lithium-ion batteries have gained significant prominence in various industries due to their high energy density compared to other battery technologies. This has led to their widespread use in energy storage systems, electric vehicles, and portable electronic devices. However, lithium-ion batteries still face limitations, particularly concerning safety issues such as overheating and aging. BMS play a crucial role in ensuring safe and effective operation by providing control and monitoring functions. Among the key challenges in BMS is the accurate prediction of SOH, SOC, and RUL of the battery. Additionally, fault detection of lithium-ion batteries is an essential function of BMS. Given the complex electrochemical characteristics of lithium-ion batteries, there is a growing interest in developing advanced BMS that can accurately estimate the battery state. This review article focuses on the increasing popularity of ANN based methods for predicting the state of lithium-ion batteries. The literature review encompasses a wide range of studies on ANN-based battery management systems. The BMS applications and prediction methods for SOH, SOC, and RUL are thoroughly classified. The review covers state-of-the-art ANN methods, including feedforward neural network, deep neural network, convolutional neural network, and recurrent neural network, and provides a comparative analysis. The article also highlights current trends and identifies gaps in BMS applications. Furthermore, it offers insights and directions for future research and development, aiming to upgrade existing BMS or create advanced BMS systems. The comprehensive analysis presented in this review article serves as a valuable resource for research and studies seeking to enhance BMS capabilities and improve battery management strategies in the context of lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐的萝完成签到,获得积分10
1秒前
鲤鱼发布了新的文献求助10
1秒前
哈哈发布了新的文献求助10
2秒前
呼呼发布了新的文献求助10
3秒前
在水一方应助fjhsg25采纳,获得10
3秒前
4秒前
4秒前
Zq完成签到 ,获得积分10
5秒前
5秒前
豆豆突发布了新的文献求助100
5秒前
5秒前
阿兰发布了新的文献求助10
5秒前
5秒前
愉快的夏菡完成签到,获得积分10
5秒前
怡然的乌完成签到,获得积分10
7秒前
Isaiah发布了新的文献求助30
7秒前
mingfeng_li完成签到,获得积分10
7秒前
科研通AI6应助苯氮小羊采纳,获得10
8秒前
黑猫发布了新的文献求助10
9秒前
黄石完成签到,获得积分10
9秒前
田燕华完成签到,获得积分10
10秒前
星辰大海应助呼呼采纳,获得10
10秒前
VirgoYn完成签到,获得积分10
10秒前
孙文杰发布了新的文献求助10
11秒前
一枚小豆发布了新的文献求助10
11秒前
玩命的雁丝完成签到 ,获得积分10
12秒前
biudungdung发布了新的文献求助10
12秒前
橘里完成签到,获得积分10
13秒前
13秒前
乐乐应助oikikio采纳,获得10
14秒前
Owen应助Supher采纳,获得10
14秒前
毛果芸香碱完成签到 ,获得积分10
15秒前
Mason完成签到 ,获得积分10
15秒前
xiaobai123456发布了新的文献求助10
15秒前
孤云出岫完成签到,获得积分10
15秒前
16秒前
苗小旦发布了新的文献求助10
17秒前
江酒完成签到 ,获得积分10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600283
求助须知:如何正确求助?哪些是违规求助? 4685999
关于积分的说明 14841023
捐赠科研通 4676153
什么是DOI,文献DOI怎么找? 2538671
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167