Applications of artificial neural network based battery management systems: A literature review

人工神经网络 计算机科学 电池(电) 工程类 可靠性工程 系统工程 人工智能 量子力学 物理 功率(物理)
作者
Mehmet Kurucan,Mete Özbaltan,Zekí Yetgín,Alkan Alkaya
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:192: 114262-114262 被引量:107
标识
DOI:10.1016/j.rser.2023.114262
摘要

Lithium-ion batteries have gained significant prominence in various industries due to their high energy density compared to other battery technologies. This has led to their widespread use in energy storage systems, electric vehicles, and portable electronic devices. However, lithium-ion batteries still face limitations, particularly concerning safety issues such as overheating and aging. BMS play a crucial role in ensuring safe and effective operation by providing control and monitoring functions. Among the key challenges in BMS is the accurate prediction of SOH, SOC, and RUL of the battery. Additionally, fault detection of lithium-ion batteries is an essential function of BMS. Given the complex electrochemical characteristics of lithium-ion batteries, there is a growing interest in developing advanced BMS that can accurately estimate the battery state. This review article focuses on the increasing popularity of ANN based methods for predicting the state of lithium-ion batteries. The literature review encompasses a wide range of studies on ANN-based battery management systems. The BMS applications and prediction methods for SOH, SOC, and RUL are thoroughly classified. The review covers state-of-the-art ANN methods, including feedforward neural network, deep neural network, convolutional neural network, and recurrent neural network, and provides a comparative analysis. The article also highlights current trends and identifies gaps in BMS applications. Furthermore, it offers insights and directions for future research and development, aiming to upgrade existing BMS or create advanced BMS systems. The comprehensive analysis presented in this review article serves as a valuable resource for research and studies seeking to enhance BMS capabilities and improve battery management strategies in the context of lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kytm完成签到,获得积分10
刚刚
烟花应助荷包蛋采纳,获得20
1秒前
吼住吼住完成签到 ,获得积分10
5秒前
传奇3应助Tycoon采纳,获得10
6秒前
丘比特应助布鲁鲁采纳,获得10
7秒前
10秒前
杰杰大叔发布了新的文献求助10
10秒前
田様应助Zy采纳,获得10
11秒前
春风吹叁旬完成签到,获得积分20
13秒前
14秒前
15秒前
16秒前
orixero应助平淡的冰巧采纳,获得10
17秒前
18秒前
李密完成签到 ,获得积分10
19秒前
白日做梦完成签到 ,获得积分10
19秒前
mm_zxh完成签到,获得积分10
19秒前
阿航完成签到,获得积分10
20秒前
小许发布了新的文献求助10
20秒前
一勺晚安z发布了新的文献求助10
21秒前
oxygen253完成签到,获得积分10
23秒前
25秒前
橙子爱吃火龙果完成签到 ,获得积分10
25秒前
西西完成签到 ,获得积分10
28秒前
mz11完成签到,获得积分10
28秒前
29秒前
29秒前
Tycoon发布了新的文献求助10
31秒前
李天王完成签到,获得积分10
31秒前
tanrui发布了新的文献求助10
32秒前
32秒前
大西瓜发布了新的文献求助10
33秒前
领导范儿应助现代雪柳采纳,获得10
35秒前
Akim应助Tycoon采纳,获得10
37秒前
Iceshadows发布了新的文献求助10
37秒前
sci大佬完成签到,获得积分10
38秒前
39秒前
闲鱼电脑完成签到,获得积分10
41秒前
41秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160