Applications of artificial neural network based battery management systems: A literature review

人工神经网络 计算机科学 电池(电) 工程类 可靠性工程 系统工程 人工智能 功率(物理) 物理 量子力学
作者
Mehmet Kurucan,Mete Özbaltan,Zekí Yetgín,Alkan Alkaya
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:192: 114262-114262 被引量:63
标识
DOI:10.1016/j.rser.2023.114262
摘要

Lithium-ion batteries have gained significant prominence in various industries due to their high energy density compared to other battery technologies. This has led to their widespread use in energy storage systems, electric vehicles, and portable electronic devices. However, lithium-ion batteries still face limitations, particularly concerning safety issues such as overheating and aging. BMS play a crucial role in ensuring safe and effective operation by providing control and monitoring functions. Among the key challenges in BMS is the accurate prediction of SOH, SOC, and RUL of the battery. Additionally, fault detection of lithium-ion batteries is an essential function of BMS. Given the complex electrochemical characteristics of lithium-ion batteries, there is a growing interest in developing advanced BMS that can accurately estimate the battery state. This review article focuses on the increasing popularity of ANN based methods for predicting the state of lithium-ion batteries. The literature review encompasses a wide range of studies on ANN-based battery management systems. The BMS applications and prediction methods for SOH, SOC, and RUL are thoroughly classified. The review covers state-of-the-art ANN methods, including feedforward neural network, deep neural network, convolutional neural network, and recurrent neural network, and provides a comparative analysis. The article also highlights current trends and identifies gaps in BMS applications. Furthermore, it offers insights and directions for future research and development, aiming to upgrade existing BMS or create advanced BMS systems. The comprehensive analysis presented in this review article serves as a valuable resource for research and studies seeking to enhance BMS capabilities and improve battery management strategies in the context of lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐完成签到 ,获得积分10
刚刚
儒雅以云完成签到,获得积分10
1秒前
科研土狗发布了新的文献求助10
1秒前
孤岛岛发布了新的文献求助10
2秒前
zss完成签到,获得积分10
2秒前
zho发布了新的文献求助10
3秒前
忧郁初瑶完成签到,获得积分10
3秒前
仔仔完成签到 ,获得积分10
4秒前
5秒前
完美世界应助NICAI采纳,获得10
5秒前
zss发布了新的文献求助10
7秒前
专注的安卉完成签到,获得积分10
7秒前
8秒前
Carry完成签到,获得积分10
9秒前
汉堡包应助嗷呜采纳,获得10
9秒前
繁木发布了新的文献求助10
10秒前
小杨发布了新的文献求助10
11秒前
小米粥完成签到,获得积分10
12秒前
常温发布了新的文献求助10
13秒前
15秒前
15秒前
16秒前
沉默夏真发布了新的文献求助10
17秒前
安德鲁森完成签到 ,获得积分10
17秒前
常温完成签到,获得积分10
19秒前
江起云发布了新的文献求助10
21秒前
优美饼干发布了新的文献求助10
23秒前
干净的烧鹅完成签到,获得积分10
23秒前
Ida完成签到 ,获得积分10
23秒前
wujuan1606完成签到 ,获得积分10
24秒前
嗷呜完成签到,获得积分10
25秒前
26秒前
wanci应助小林采纳,获得80
27秒前
kyt完成签到 ,获得积分10
27秒前
mikumiku发布了新的文献求助30
30秒前
梅子黄时雨完成签到,获得积分10
30秒前
俭朴的猫咪完成签到,获得积分10
31秒前
YYA完成签到 ,获得积分10
32秒前
32秒前
genomed应助victor采纳,获得10
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798970
求助须知:如何正确求助?哪些是违规求助? 3344671
关于积分的说明 10321176
捐赠科研通 3061162
什么是DOI,文献DOI怎么找? 1680049
邀请新用户注册赠送积分活动 806877
科研通“疑难数据库(出版商)”最低求助积分说明 763429