Sampled-Data Finite-Dimensional Observer-Based Control of 1D Stochastic Parabolic PDEs

数学 抛物型偏微分方程 观察员(物理) 应用数学 数学分析 偏微分方程 牙石(牙科) 物理 牙科 量子力学 医学
作者
Pengfei Wang,Emilia Fridman
出处
期刊:Siam Journal on Control and Optimization [Society for Industrial and Applied Mathematics]
卷期号:62 (1): 297-325 被引量:5
标识
DOI:10.1137/22m1538247
摘要

.Sampled-data control of PDEs has become an active research area; however, existing results are confined to deterministic PDEs. Sampled-data controller design of stochastic PDEs is a challenging open problem. In this paper we suggest a solution to this problem for 1D stochastic diffusion-reaction equations under discrete-time nonlocal measurement via the modal decomposition method, where both the considered system and the measurement are subject to nonlinear multiplicative noise. We present two methods: a direct one with sampled-data controller implemented via zero-order hold device, and a dynamic-extension-based one with sampled-data controller implemented via a generalized hold device. For both methods, we provide mean-square \(L^2\) exponential stability analysis of the full-order closed-loop system. We construct a Lyapunov functional \(V\) that depends on both the deterministic and stochastic parts of the finite-dimensional part of the closed-loop system. We employ corresponding Itô's formulas for stochastic ODEs and PDEs, respectively, and further combine \(V\) with Halanay's inequality with respect to the expected value of \(V\) to compensate for sampling in the infinite-dimensional tail. We provide linear matrix inequalities (LMIs) for finding the observer dimension and upper bounds on sampling intervals and noise intensities that preserve the mean-square exponential stability. We prove that the LMIs are always feasible for large enough observer dimension and small enough bounds on sampling intervals and noise intensities. A numerical example demonstrates the efficiency of our methods. The example shows that for the same bounds on noise intensities, the dynamic-extension-based controller allows larger sampling intervals, but this is due to its complexity (generalized hold device for sample-data implementation compared to zero-order hold for the direct method).Keywordsstochastic parabolic PDEssampled-data controlobserver-based controlboundary controlLyapunov–Krasovskii methodMSC codes93C5760H1593E15

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lily完成签到,获得积分10
1秒前
2秒前
FashionBoy应助TianningSun采纳,获得10
2秒前
2秒前
素素素完成签到 ,获得积分10
3秒前
科研通AI6应助H哈采纳,获得10
3秒前
Bruce发布了新的文献求助10
3秒前
3秒前
愤怒的豌豆完成签到,获得积分10
4秒前
Jay完成签到,获得积分10
4秒前
二三发布了新的文献求助10
5秒前
5秒前
hh发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
飘逸的翼发布了新的文献求助10
7秒前
Owen应助坦率灵槐采纳,获得10
9秒前
10秒前
10秒前
Jimmy Ko完成签到,获得积分10
10秒前
10秒前
11秒前
范森林发布了新的文献求助30
11秒前
11秒前
绊宸完成签到,获得积分10
11秒前
luo发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
开心的眼睛完成签到,获得积分10
12秒前
jjj完成签到,获得积分10
13秒前
Jimmy Ko发布了新的文献求助10
13秒前
14秒前
桐桐应助端庄的越彬采纳,获得10
14秒前
15秒前
silentforsure发布了新的文献求助10
15秒前
yoimiya完成签到,获得积分10
15秒前
TianningSun发布了新的文献求助10
16秒前
of完成签到 ,获得积分10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262