亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adapted large language models can outperform medical experts in clinical text summarization

自动汇总 计算机科学 自然语言处理 人工智能 情报检索 医学
作者
Dave Van Veen,Cara Van Uden,Louis Blankemeier,Jean-Benoit Delbrouck,Asad Aali,Christian Bluethgen,Anuj Pareek,Malgorzata Polacin,Eduardo Pontes Reis,Anna Seehofnerová,Nidhi Rohatgi,Poonam Hosamani,William Collins,Neera Ahuja,Curtis P. Langlotz,Jason Hom,Sergios Gatidis,John M. Pauly,Akshay Chaudhari
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:30 (4): 1134-1142 被引量:142
标识
DOI:10.1038/s41591-024-02855-5
摘要

Analyzing vast textual data and summarizing key information from electronic health records imposes a substantial burden on how clinicians allocate their time. Although large language models (LLMs) have shown promise in natural language processing (NLP) tasks, their effectiveness on a diverse range of clinical summarization tasks remains unproven. Here we applied adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks: radiology reports, patient questions, progress notes and doctor–patient dialogue. Quantitative assessments with syntactic, semantic and conceptual NLP metrics reveal trade-offs between models and adaptation methods. A clinical reader study with 10 physicians evaluated summary completeness, correctness and conciseness; in most cases, summaries from our best-adapted LLMs were deemed either equivalent (45%) or superior (36%) compared with summaries from medical experts. The ensuing safety analysis highlights challenges faced by both LLMs and medical experts, as we connect errors to potential medical harm and categorize types of fabricated information. Our research provides evidence of LLMs outperforming medical experts in clinical text summarization across multiple tasks. This suggests that integrating LLMs into clinical workflows could alleviate documentation burden, allowing clinicians to focus more on patient care. Comparative performance assessment of large language models identified ChatGPT-4 as the best-adapted model across a diverse set of clinical text summarization tasks, and it outperformed 10 medical experts in a reader study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
22秒前
28秒前
早睡一哥完成签到,获得积分10
33秒前
002完成签到,获得积分10
39秒前
包容的剑完成签到 ,获得积分10
42秒前
53秒前
003完成签到,获得积分10
56秒前
淡淡醉波wuliao完成签到 ,获得积分10
1分钟前
1分钟前
Sandy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Sandy完成签到,获得积分10
1分钟前
传奇3应助天空之城采纳,获得10
1分钟前
1分钟前
1分钟前
天空之城发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
豌豆发布了新的文献求助10
2分钟前
我是老大应助豌豆采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
111完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
柯伊达完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667367
邀请新用户注册赠送积分活动 798106
科研通“疑难数据库(出版商)”最低求助积分说明 758229