已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep learning method for multi-task intelligent detection of oral cancer based on optical fiber Raman spectroscopy

拉曼光谱 任务(项目管理) 深度学习 光纤 计算机科学 光谱学 癌症检测 纤维 人工智能 光电子学 癌症 材料科学 医学 光学 物理 系统工程 工程类 电信 内科学 复合材料 量子力学
作者
Lianyu Li,Mingxin Yu,Xing Li,Xinsong Ma,Lianqing Zhu,Tao Zhang
出处
期刊:Analytical Methods [Royal Society of Chemistry]
卷期号:16 (11): 1659-1673 被引量:5
标识
DOI:10.1039/d3ay02250a
摘要

In the fight against oral cancer, innovative methods like Raman spectroscopy and deep learning have become powerful tools, particularly in integral tasks encompassing tumor staging, lymph node staging, and histological grading. These aspects are essential for the development of effective treatment strategies and prognostic assessment. However, it is important to note that most research so far has focused on solutions to one of these problems and has not taken full advantage of the potential wealth of information in the data. To compensate for this shortfall, we conceived a method that combines Raman spectroscopy with deep learning for simultaneous processing of multiple classification tasks, including tumor staging, lymph node staging, and histological grading. To achieve this innovative approach, we collected 1750 Raman spectra from 70 tissue samples, including normal and cancerous tissue samples from 35 patients with oral cancer. In addition, we used a deep neural network architecture to design four distinct multi-task network (MTN) models for intelligent oral cancer diagnosis, named MTN-Alexnet, MTN-Googlenet, MTN-Resnet50, and MTN-Transformer. To determine their effectiveness, we compared these multitask models to each other and to single-task models and traditional machine learning methods. The preliminary experimental results show that our multi-task network model has good performance, among which MTN-Transformer performs best. Specifically, MTN-Transformer has an accuracy of 81.5%, a precision of 82.1%, a sensitivity of 80.2%, and an F1_score of 81.1% in terms of tumor staging. In the field of lymph node staging, the accuracy, precision, sensitivity, and F1_score of MTN-Transformer are 81.3%, 83.0%, 80.1%, and 81.5% respectively. Similarly, for the histological grading classification tasks, the accuracy was 83.0%, the precision 84.3%, the sensitivity 76.7%, and the F1_score 80.2%. This code is available at https://github.com/ISCLab-Bistu/MultiTask-OralRamanSystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
William完成签到,获得积分10
2秒前
hy发布了新的文献求助10
4秒前
希望天下0贩的0应助汐月采纳,获得10
5秒前
自然的清涟完成签到 ,获得积分10
6秒前
8秒前
shinble发布了新的文献求助10
11秒前
大气小天鹅完成签到 ,获得积分10
12秒前
星辰大海应助科研通管家采纳,获得20
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
MchemG应助科研通管家采纳,获得30
12秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
喜悦夏青发布了新的文献求助10
13秒前
科研通AI5应助自由的无色采纳,获得10
14秒前
斯文的凝珍完成签到,获得积分10
14秒前
15秒前
图样图森破完成签到 ,获得积分10
15秒前
gttlyb完成签到,获得积分10
16秒前
17秒前
小枣完成签到 ,获得积分10
18秒前
七慕凉完成签到,获得积分10
18秒前
Lucas应助微笑子慧采纳,获得10
19秒前
领导范儿应助CSP000采纳,获得10
20秒前
hy完成签到,获得积分10
20秒前
www完成签到,获得积分10
21秒前
爱学习发布了新的文献求助10
21秒前
勤奋的下水道工人完成签到,获得积分10
21秒前
心灵美语兰完成签到 ,获得积分10
25秒前
yyy完成签到,获得积分10
26秒前
科研通AI5应助爱学习采纳,获得10
27秒前
淡水鱼完成签到 ,获得积分10
29秒前
热情的板栗完成签到,获得积分10
30秒前
SciGPT应助机智的小懒虫采纳,获得10
30秒前
32秒前
大豹子发布了新的文献求助10
33秒前
33秒前
欣喜的薯片完成签到 ,获得积分10
35秒前
QQ发布了新的文献求助10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340477
关于积分的说明 10300344
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677368
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491