Bioinformatics in Drug Discovery

药物发现 计算生物学 药品 计算机科学 数据科学 生物信息学 生物 药理学
作者
Ngo Anh Dao,Thuy-Duong Vu,Dinh‐Toi Chu
出处
期刊:Advances in Bioinformatics [Hindawi Publishing Corporation]
卷期号:: 239-248 被引量:3
标识
DOI:10.1007/978-981-99-8401-5_11
摘要

Drug discovery requires high cost and is a time-consuming process, and the facilitation of computer-based drug design methods is one of the most potential approaches to change this challenging situation. In fact, along with the current advancement of science and technology, especially in the field of bioinformatics, the stages of drug discovery can be significantly shortened while the cost is reduced and the efficacy of treatment increases. Bioinformatics tools and platforms can not only advance drug target identification and screening, but also support drug candidate selection and evaluate effectiveness of drug candidates. In recent years, bioinformatics tools have often been used to screen the sequences of gene fragments, uncovering potential binding sites for therapeutic drugs or also known as drug targets. Besides, the high-throughput screen method is a popular method for drug candidate identification for detecting potential small molecules among a large amount of information in available data libraries. Since the early years of the twenty-first century, research has applied bioinformatics to screen targeted molecules using the high-throughput screening model. Bioinformatics also has a huge contribution in virtual screening through the early elimination of substances with undesirable properties through computers and in silico screening, thereby finding the closest compounds to the desired drug. Based on these tools and techniques, the efficacy of drug candidates can be easily and quickly determined, especially in individuals, which revolutionarily benefits drug validation and personalized pharmacological therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助坦率的寻双采纳,获得10
刚刚
1秒前
1秒前
田格本发布了新的文献求助10
2秒前
4秒前
七慕凉完成签到,获得积分10
5秒前
科科发布了新的文献求助10
6秒前
lizhiqian2024发布了新的文献求助10
9秒前
11秒前
科研通AI5应助舒适路人采纳,获得10
12秒前
大模型应助田格本采纳,获得10
12秒前
香蕉觅云应助Tao采纳,获得10
13秒前
完美世界应助腼腆的恶天采纳,获得10
14秒前
彭于晏应助HK采纳,获得10
14秒前
SciGPT应助慕容雅柏采纳,获得10
14秒前
CC1219应助Fiona采纳,获得10
15秒前
18秒前
桐桐应助意绵雅风采纳,获得20
18秒前
19秒前
Cholera完成签到,获得积分10
19秒前
21秒前
科研通AI5应助坦率的寻双采纳,获得10
23秒前
24秒前
科研通AI2S应助舒适路人采纳,获得10
24秒前
27秒前
Tao发布了新的文献求助10
27秒前
28秒前
28秒前
29秒前
科研通AI2S应助漂亮钢铁侠采纳,获得10
30秒前
31秒前
32秒前
34秒前
34秒前
华仔应助邱旭东采纳,获得10
35秒前
Grin完成签到,获得积分10
35秒前
35秒前
35秒前
pluto应助舒适路人采纳,获得10
37秒前
华仔应助橙子采纳,获得10
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329252
关于积分的说明 10241071
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268