亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Potts Hamiltonian Models and Molecular Dynamics Free Energy Simulations for Predicting the Impact of Mutations on Protein Kinase Stability

波茨模型 分子动力学 计算生物学 生物 计算机科学 遗传学 物理 统计物理学 量子力学 伊辛模型
作者
Abhishek Thakur,Joan Gizzio,Ronald M. Levy
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:128 (7): 1656-1667 被引量:11
标识
DOI:10.1021/acs.jpcb.3c08097
摘要

Single-point mutations in kinase proteins can affect their stability and fitness, and computational analysis of these effects can provide insights into the relationships among protein sequence, structure, and function for this enzyme family. To assess the impact of mutations on protein stability, we used a sequence-based Potts Hamiltonian model trained on a kinase family multiple-sequence alignment (MSA) to calculate the statistical energy (fitness) effects of mutations and compared these against relative folding free energies (ΔΔGs) calculated from all-atom molecular dynamics free energy perturbation (FEP) simulations in explicit solvent. The fitness effects of mutations in the Potts model (ΔEs) showed good agreement with experimental thermostability data (Pearson r = 0.68), similar to the correlation we observed with ΔΔGs predicted from structure-based relative FEP simulations. Recognizing the possible advantages of using Potts models to rapidly estimate protein stability effects of kinase mutations seen in cancer genomics data, we used the Potts statistical energy model to estimate the stability effects of 65 conservative and nonconservative mutations across three distinct kinases (Wee1, Abl1, and Cdc7) with somatic mutations reported in the Genomic Data Commons (GDC) database. The ΔEs of these mutations calculated from the Potts model are consistent with the corresponding ΔΔGs from FEP simulations (Pearson ratio of 0.72). The agreement between these methods suggests that the Potts model may be used as a sequence-based tool for high-throughput screening of mutational effects as part of a computational pipeline for predicting the stability effects of mutations. We also demonstrate how the scalability of the fitness-based Potts model calculations permits analyses that are not easily accessed using FEP simulations. To this end, we employed site-saturation mutagenesis in the Potts model in order to investigate the relative stability effects of mutations seen in different cancer evolutionary scenarios. We used this approach to analyze the effects of drug pressure in Abl kinase by contrasting the relative fitness penalties of somatic mutations seen in miscellaneous cancer types with those calculated for mutations associated with cancer drug resistance. We observed that, in contrast to somatic mutations of Abl seen in various tumors that appear to have evolved neutrally, cancer mutations that evolved under drug pressure in Abl-targeted therapies tend to preserve enzyme stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
30秒前
CipherSage应助欢喜的怜菡采纳,获得10
45秒前
MiaMia应助Wei采纳,获得10
47秒前
57秒前
1分钟前
Chloe应助科研通管家采纳,获得10
1分钟前
若谷叻完成签到,获得积分10
1分钟前
在水一方应助虚心的迎松采纳,获得10
1分钟前
2分钟前
2分钟前
帅气的樱桃完成签到 ,获得积分10
2分钟前
丁丁慧完成签到 ,获得积分10
2分钟前
薛小飞飞完成签到 ,获得积分10
2分钟前
碳水化合物完成签到,获得积分10
3分钟前
3分钟前
3分钟前
JamesPei应助科研通管家采纳,获得10
3分钟前
Chloe应助科研通管家采纳,获得10
3分钟前
HudaBala发布了新的文献求助10
3分钟前
科研通AI5应助虚心的迎松采纳,获得10
4分钟前
4分钟前
Dreamer.发布了新的文献求助10
4分钟前
crane完成签到,获得积分10
4分钟前
杨枝修喵完成签到,获得积分10
5分钟前
从容芮应助科研通管家采纳,获得50
5分钟前
从容芮应助科研通管家采纳,获得50
5分钟前
从容芮应助科研通管家采纳,获得50
5分钟前
喜悦荧应助科研通管家采纳,获得20
5分钟前
5分钟前
芊芊完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
han完成签到,获得积分10
6分钟前
Owen应助加湿器采纳,获得10
6分钟前
从容芮应助科研通管家采纳,获得50
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
大模型应助加湿器采纳,获得10
7分钟前
飞快的孱完成签到,获得积分10
8分钟前
Isaac完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
La RSE en pratique 400
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4427850
求助须知:如何正确求助?哪些是违规求助? 3905670
关于积分的说明 12137520
捐赠科研通 3551651
什么是DOI,文献DOI怎么找? 1948977
邀请新用户注册赠送积分活动 989131
科研通“疑难数据库(出版商)”最低求助积分说明 884987