Hardware implementation of memristor-based artificial neural networks

记忆电阻器 计算机科学 人工神经网络 物理神经网络 人工智能 计算机体系结构 人工神经网络的类型 时滞神经网络 电气工程 工程类
作者
Fernando Aguirre,Abu Sebastian,Manuel Le Gallo,Wenhao Song,Tong Wang,J. Joshua Yang,Wei Lü,Meng‐Fan Chang,Daniele Ielmini,Yuchao Yang,Adnan Mehonić,Anthony J. Kenyon,Marco A. Villena,J.B. Roldán,Yuting Wu,Hung-Hsi Hsu,Nagarajan Raghavan,J. Suñé,E. Miranda,Ahmed M. Eltawil,Gianluca Setti,Kamilya Smagulova,K. Saláma,Olga Krestinskaya,Xiaobing Yan,Kah‐Wee Ang,Samarth Jain,Sifan Li,Osamah Alharbi,Sebastián Pazos,Mario Lanza
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:15 (1) 被引量:76
标识
DOI:10.1038/s41467-024-45670-9
摘要

Abstract Artificial Intelligence (AI) is currently experiencing a bloom driven by deep learning (DL) techniques, which rely on networks of connected simple computing units operating in parallel. The low communication bandwidth between memory and processing units in conventional von Neumann machines does not support the requirements of emerging applications that rely extensively on large sets of data. More recent computing paradigms, such as high parallelization and near-memory computing, help alleviate the data communication bottleneck to some extent, but paradigm- shifting concepts are required. Memristors, a novel beyond-complementary metal-oxide-semiconductor (CMOS) technology, are a promising choice for memory devices due to their unique intrinsic device-level properties, enabling both storing and computing with a small, massively-parallel footprint at low power. Theoretically, this directly translates to a major boost in energy efficiency and computational throughput, but various practical challenges remain. In this work we review the latest efforts for achieving hardware-based memristive artificial neural networks (ANNs), describing with detail the working principia of each block and the different design alternatives with their own advantages and disadvantages, as well as the tools required for accurate estimation of performance metrics. Ultimately, we aim to provide a comprehensive protocol of the materials and methods involved in memristive neural networks to those aiming to start working in this field and the experts looking for a holistic approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tohka完成签到 ,获得积分10
刚刚
Goblin完成签到 ,获得积分10
刚刚
1秒前
Qu_Yun发布了新的文献求助10
3秒前
www完成签到 ,获得积分10
3秒前
花生完成签到 ,获得积分10
4秒前
Cao完成签到 ,获得积分10
6秒前
酷炫的毛巾应助雪宝宝采纳,获得10
6秒前
7秒前
9秒前
MOMO完成签到,获得积分10
9秒前
李善聪发布了新的文献求助20
10秒前
李健的小迷弟应助Alivelean采纳,获得10
10秒前
10秒前
CHENXIN532完成签到,获得积分10
10秒前
强风吹拂完成签到,获得积分10
11秒前
小满胜万全完成签到,获得积分10
11秒前
max完成签到,获得积分10
12秒前
tigger完成签到 ,获得积分10
12秒前
12秒前
13秒前
CHENXIN532发布了新的文献求助10
14秒前
15秒前
xiao_J发布了新的文献求助30
17秒前
立稳flag关注了科研通微信公众号
19秒前
ykxa完成签到,获得积分20
20秒前
23秒前
23秒前
明天好完成签到,获得积分10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
pluto应助科研通管家采纳,获得20
23秒前
852应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
溫蒂完成签到,获得积分10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
wangjun完成签到,获得积分10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315