Polarization‐Driven Ultrafast Optical Switching in TiS3 Nanoribbons via Anisotropic Hot Carrier Dynamics

超短脉冲 材料科学 极化(电化学) 各向异性 纳米光子学 皮秒 光开关 光电子学 光学 激光器 物理 化学 物理化学
作者
Sang Ho Suk,Sanghee Nah,Muhammad Sajjad,Sung Bok Seo,Jiacheng Song,Nirpendra Singh,Sangwan Sim
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:11 (15) 被引量:10
标识
DOI:10.1002/adom.202300370
摘要

Abstract Layered quasi‐1D nanomaterials exhibit strong linear dichroism and effective light‐matter interactions, promising for novel information devices driven by light‐polarization. In particular, their optical anisotropy and ultrafast photoresponse allow for polarization‐controlled nanophotonic switches and modulators. However, the technology still requires substantial further studies due to an insufficient understanding of modulation mechanisms and limited investigations of a few materials. Here, transient absorption (TA) microscopy is employed to investigate the ultrafast polarization‐based optical switching in TiS 3 nanoribbons, a rising quasi‐1D material of the transition metal trichalcogenide family. Highly anisotropic sub‐picosecond near‐infrared modulation is observed, which is most pronounced when the polarization of the probe pulse is aligned with the nanoribbon axis but disappears as the polarization is rotated to the perpendicular orientation. The authors attribute this significant dependence on the probe polarization to the hot carrier‐induced broadening of an anisotropic interband resonance, as supported by analyses of transient TA line shapes and first principles calculated optical transitions. Furthermore, a strong pump polarization‐dependent modulation is obtained by tuning the pumping energy, enabling highly anisotropic all‐optical switching controlled solely by polarization. These results offer comprehensive information on both probe‐ and pump‐polarization‐based modulations and a deeper physical understanding of polarization‐dependent photoresponse through ultrafast hot carrier dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叮叮当当完成签到,获得积分10
1秒前
1秒前
1秒前
任性白卉应助安烁采纳,获得10
1秒前
赘婿应助阿州采纳,获得10
2秒前
2秒前
3秒前
3秒前
hang发布了新的文献求助10
4秒前
5秒前
时光悠应助嘿嘿采纳,获得200
6秒前
有为发布了新的文献求助10
6秒前
yyyy发布了新的文献求助30
6秒前
JJ完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
蔺不平发布了新的文献求助30
8秒前
zhengzhao发布了新的文献求助10
9秒前
10秒前
yy发布了新的文献求助10
10秒前
12秒前
共享精神应助易达采纳,获得30
12秒前
12秒前
aaa发布了新的文献求助20
12秒前
shijiediyi发布了新的文献求助10
13秒前
JamesPei应助aa采纳,获得10
14秒前
俏皮的雨泽完成签到,获得积分10
14秒前
14秒前
害怕的丑发布了新的文献求助10
15秒前
梅思寒完成签到 ,获得积分10
17秒前
大岩石发布了新的文献求助10
18秒前
18秒前
z_zq完成签到,获得积分10
18秒前
19秒前
嘿嘿重新开启了慎独文献应助
20秒前
22秒前
新年快乐发布了新的文献求助10
23秒前
怡然的元绿完成签到,获得积分10
23秒前
大岩石完成签到,获得积分10
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097138
求助须知:如何正确求助?哪些是违规求助? 3634761
关于积分的说明 11521675
捐赠科研通 3345216
什么是DOI,文献DOI怎么找? 1838530
邀请新用户注册赠送积分活动 906104
科研通“疑难数据库(出版商)”最低求助积分说明 823456