Effect of grinding damage on cutting force and ductile machining during single grain scratching of monocrystalline silicon

材料科学 单晶硅 刮伤 机械加工 研磨 冶金 复合材料
作者
Ming Li,Xiaoguang Guo,Siyang Dai,Song Yuan,Jianli Ma,Fumin Liu,Lemin Zhang,Dongming Guo,Ping Zhou
出处
期刊:Materials Science in Semiconductor Processing [Elsevier BV]
卷期号:151: 107019-107019 被引量:23
标识
DOI:10.1016/j.mssp.2022.107019
摘要

Understanding the initiating and suppression mechanisms of existing defects are the key to optimizing the ultra-precision grinding process of hard and brittle materials. This paper discusses the effects of grinding damage on material removal mechanism from the perspectives of residual scratch depth, scratch morphology and normal scratching force, through conducting the contrast variable-depth nano-scratch experiment on polished and ground monocrystalline silicon and establishing the single grain scratching Smoothed Particle Hydrodynamics (SPH) model. The experimental and simulation results show that radial crack on ground silicon surface is almost invisible due to the existence of grinding marks, which indicates that it is difficult to judge the ductile brittle transition (DBT) point by the traditional method of observing cracks. With the increase of penetration depth, pop-in will occur in the residual scratch depth of polished and ground silicon, indicating that the material removal mode has transformed, which provides an important basis for judging the DBT point. The DBT critical normal scratching force (38.93 mN) and residual scratch depth (−0.14 μm) of ground silicon are much higher than those of polished silicon, implying ground silicon is easier to achieve ductile processing. Meanwhile, when the penetration depth is the same, compared to polished silicon, the normal scratching force of ground silicon is generally larger. Finally, a single grain scratching SPH model of pre-stressed silicon is established. And the simulated phenomenon and conclusions are consistent with the experiment, which proves that the surface compressive stress is an important factor that causes the removal characteristics of ground silicon to be different from polished silicon. This study provides a theoretical basis for understanding the ultra-precision grinding removal mechanism of hard and brittle materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
加速完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
Tiffany完成签到,获得积分10
5秒前
武雨寒发布了新的文献求助10
5秒前
姜睿思发布了新的文献求助10
5秒前
鳗鱼思松发布了新的文献求助10
7秒前
liuzhixiao发布了新的文献求助10
7秒前
zxb发布了新的文献求助10
7秒前
8秒前
9秒前
湿地小怪兽完成签到,获得积分10
9秒前
qqqqqqqqqqq完成签到,获得积分10
10秒前
11秒前
我是老大应助七七采纳,获得10
11秒前
13秒前
liuzhanyu完成签到,获得积分10
14秒前
zzx发布了新的文献求助10
15秒前
阡陌完成签到 ,获得积分10
15秒前
yeziyang发布了新的文献求助10
16秒前
wu发布了新的文献求助10
16秒前
角落的蘑菇完成签到,获得积分10
16秒前
dt完成签到,获得积分10
16秒前
18秒前
jerryzhu发布了新的文献求助10
18秒前
过时的不评完成签到,获得积分10
18秒前
19秒前
丘比特应助阿关采纳,获得10
19秒前
自信鬼神完成签到,获得积分10
21秒前
22秒前
wu完成签到,获得积分20
23秒前
lumangxiaozi完成签到,获得积分10
24秒前
大帅哥发布了新的文献求助10
24秒前
24秒前
25秒前
26秒前
26秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110621
求助须知:如何正确求助?哪些是违规求助? 3649026
关于积分的说明 11557786
捐赠科研通 3354255
什么是DOI,文献DOI怎么找? 1842816
邀请新用户注册赠送积分活动 909036
科研通“疑难数据库(出版商)”最低求助积分说明 825914