Effect of grinding damage on cutting force and ductile machining during single grain scratching of monocrystalline silicon

材料科学 单晶硅 刮伤 机械加工 研磨 冶金 复合材料
作者
Ming Li,Xiaoguang Guo,Siyang Dai,Song Yuan,Jianli Ma,Fumin Liu,Lemin Zhang,Dongming Guo,Ping Zhou
出处
期刊:Materials Science in Semiconductor Processing [Elsevier]
卷期号:151: 107019-107019 被引量:23
标识
DOI:10.1016/j.mssp.2022.107019
摘要

Understanding the initiating and suppression mechanisms of existing defects are the key to optimizing the ultra-precision grinding process of hard and brittle materials. This paper discusses the effects of grinding damage on material removal mechanism from the perspectives of residual scratch depth, scratch morphology and normal scratching force, through conducting the contrast variable-depth nano-scratch experiment on polished and ground monocrystalline silicon and establishing the single grain scratching Smoothed Particle Hydrodynamics (SPH) model. The experimental and simulation results show that radial crack on ground silicon surface is almost invisible due to the existence of grinding marks, which indicates that it is difficult to judge the ductile brittle transition (DBT) point by the traditional method of observing cracks. With the increase of penetration depth, pop-in will occur in the residual scratch depth of polished and ground silicon, indicating that the material removal mode has transformed, which provides an important basis for judging the DBT point. The DBT critical normal scratching force (38.93 mN) and residual scratch depth (−0.14 μm) of ground silicon are much higher than those of polished silicon, implying ground silicon is easier to achieve ductile processing. Meanwhile, when the penetration depth is the same, compared to polished silicon, the normal scratching force of ground silicon is generally larger. Finally, a single grain scratching SPH model of pre-stressed silicon is established. And the simulated phenomenon and conclusions are consistent with the experiment, which proves that the surface compressive stress is an important factor that causes the removal characteristics of ground silicon to be different from polished silicon. This study provides a theoretical basis for understanding the ultra-precision grinding removal mechanism of hard and brittle materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助404NotFOUND采纳,获得30
刚刚
石东明发布了新的文献求助10
刚刚
刚刚
Doctor姜完成签到 ,获得积分10
1秒前
1秒前
天天快乐应助zhangzhibin采纳,获得10
2秒前
2秒前
dsa发布了新的文献求助50
3秒前
科目三应助DC采纳,获得10
3秒前
cappuccino完成签到,获得积分10
3秒前
充电宝应助123采纳,获得10
3秒前
4秒前
5秒前
5秒前
666发布了新的文献求助10
5秒前
5秒前
zzyytt完成签到,获得积分10
6秒前
hhj02发布了新的文献求助10
6秒前
阿黎完成签到,获得积分10
6秒前
木森ab发布了新的文献求助10
7秒前
7秒前
Ava应助草长莺飞采纳,获得10
8秒前
NAHIY发布了新的文献求助30
8秒前
8秒前
8秒前
supreme辉发布了新的文献求助10
10秒前
共享精神应助bemyselfelsa采纳,获得10
10秒前
砼砼发布了新的文献求助10
10秒前
stt发布了新的文献求助10
11秒前
11秒前
斯文败类应助小M采纳,获得10
12秒前
12秒前
hkym应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
spujo应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
王jj发布了新的文献求助10
13秒前
CipherSage应助过段时间采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300188
求助须知:如何正确求助?哪些是违规求助? 4448119
关于积分的说明 13844972
捐赠科研通 4333773
什么是DOI,文献DOI怎么找? 2379109
邀请新用户注册赠送积分活动 1374221
关于科研通互助平台的介绍 1339946