Quantum Descriptors for Predicting and Understanding the Structure–Activity Relationships of Michael Acceptor Warheads

碳负离子 化学 电泳剂 位阻效应 计算化学 亲电取代 迈克尔反应 立体化学 有机化学 催化作用
作者
Ruibin Liu,Erik Antonio Vázquez-Montelongo,Shuhua Ma,Jana Shen
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4912-4923 被引量:8
标识
DOI:10.1021/acs.jcim.3c00720
摘要

Predictive modeling and understanding of chemical warhead reactivities have the potential to accelerate targeted covalent drug discovery. Recently, the carbanion formation free energies as well as other ground-state electronic properties from density functional theory (DFT) calculations have been proposed as predictors of glutathione reactivities of Michael acceptors; however, no clear consensus exists. By profiling the thiol-Michael reactions of a diverse set of singly- and doubly-activated olefins, including several model warheads related to afatinib, here we reexamined the question of whether low-cost electronic properties can be used as predictors of reaction barriers. The electronic properties related to the carbanion intermediate were found to be strong predictors, e.g., the change in the Cβ charge accompanying carbanion formation. The least expensive reactant-only properties, the electrophilicity index, and the Cβ charge also show strong rank correlations, suggesting their utility as quantum descriptors. A second objective of the work is to clarify the effect of the β-dimethylaminomethyl (DMAM) substitution, which is incorporated in the warheads of several FDA-approved covalent drugs. Our data suggest that the β-DMAM substitution is cationic at neutral pH in solution and promotes acrylamide's intrinsic reactivity by enhancing the charge accumulation at Cα upon carbanion formation. In contrast, the inductive effect of the β-trimethylaminomethyl substitution is diminished due to steric hindrance. Together, these results reconcile the current views of the intrinsic reactivities of acrylamides and contribute to large-scale predictive modeling and an understanding of the structure–activity relationships of Michael acceptors for rational TCI design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
搜集达人应助鱼与木头采纳,获得10
4秒前
领导范儿应助俊逸如风采纳,获得10
4秒前
Hello应助车厘子采纳,获得10
4秒前
烟花应助asf采纳,获得10
4秒前
czy完成签到,获得积分10
5秒前
李健应助我要做科研狗采纳,获得10
5秒前
wch666发布了新的文献求助10
6秒前
小二郎应助jovrtic采纳,获得10
6秒前
Giinjju发布了新的文献求助10
6秒前
天晴完成签到,获得积分10
7秒前
7秒前
77发布了新的文献求助10
7秒前
drfwjuikesv完成签到,获得积分10
10秒前
he发布了新的文献求助30
11秒前
11秒前
研友_VZG7GZ应助小李采纳,获得10
12秒前
落寞妙松完成签到,获得积分10
13秒前
sevten发布了新的文献求助10
13秒前
13秒前
14秒前
SIKI完成签到,获得积分10
15秒前
美丽的冬云完成签到 ,获得积分10
18秒前
18秒前
ash完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
19秒前
20秒前
myuniv发布了新的文献求助10
20秒前
21秒前
jovrtic发布了新的文献求助10
22秒前
SIKI发布了新的文献求助10
23秒前
猪猪hero发布了新的文献求助10
23秒前
23秒前
23秒前
Mercy发布了新的文献求助10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水产动物免疫学 500
鱼类基因组学及基因组物种技术 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4176584
求助须知:如何正确求助?哪些是违规求助? 3711870
关于积分的说明 11705579
捐赠科研通 3394740
什么是DOI,文献DOI怎么找? 1862417
邀请新用户注册赠送积分活动 921195
科研通“疑难数据库(出版商)”最低求助积分说明 833056