Comparison between transformers and convolutional models for fine-grained classification of insects

计算机科学 变压器 卷积神经网络 推论 人工智能 深度学习 机器学习 标杆管理 工程类 电气工程 业务 营销 电压
作者
Rita Pucci,Vincent J. Kalkman,Dan Stowell
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2307.11112
摘要

Fine-grained classification is challenging due to the difficulty of finding discriminatory features. This problem is exacerbated when applied to identifying species within the same taxonomical class. This is because species are often sharing morphological characteristics that make them difficult to differentiate. We consider the taxonomical class of Insecta. The identification of insects is essential in biodiversity monitoring as they are one of the inhabitants at the base of many ecosystems. Citizen science is doing brilliant work of collecting images of insects in the wild giving the possibility to experts to create improved distribution maps in all countries. We have billions of images that need to be automatically classified and deep neural network algorithms are one of the main techniques explored for fine-grained tasks. At the SOTA, the field of deep learning algorithms is extremely fruitful, so how to identify the algorithm to use? We focus on Odonata and Coleoptera orders, and we propose an initial comparative study to analyse the two best-known layer structures for computer vision: transformer and convolutional layers. We compare the performance of T2TViT, a fully transformer-base, EfficientNet, a fully convolutional-base, and ViTAE, a hybrid. We analyse the performance of the three models in identical conditions evaluating the performance per species, per morph together with sex, the inference time, and the overall performance with unbalanced datasets of images from smartphones. Although we observe high performances with all three families of models, our analysis shows that the hybrid model outperforms the fully convolutional-base and fully transformer-base models on accuracy performance and the fully transformer-base model outperforms the others on inference speed and, these prove the transformer to be robust to the shortage of samples and to be faster at inference time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电致阿光完成签到,获得积分10
刚刚
君莫笑完成签到,获得积分10
刚刚
医疗搜救犬完成签到 ,获得积分10
1秒前
陈永伟发布了新的文献求助10
2秒前
wanci应助woobinhua采纳,获得10
6秒前
耸耸完成签到 ,获得积分10
7秒前
12秒前
12秒前
lili完成签到 ,获得积分10
13秒前
白瓜完成签到 ,获得积分10
14秒前
14秒前
in2you发布了新的文献求助10
15秒前
15秒前
www完成签到 ,获得积分10
17秒前
17秒前
woobinhua发布了新的文献求助10
19秒前
19秒前
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
21秒前
22秒前
qinLuo完成签到 ,获得积分10
23秒前
SolderOH完成签到,获得积分10
24秒前
25秒前
观妙散人发布了新的文献求助10
26秒前
haizz完成签到 ,获得积分10
26秒前
jianhua发布了新的文献求助10
27秒前
yy完成签到 ,获得积分10
29秒前
shyの煜完成签到 ,获得积分10
30秒前
XM完成签到 ,获得积分10
32秒前
Jeson完成签到,获得积分10
38秒前
乐乐应助喜悦香萱采纳,获得10
39秒前
文献高手完成签到 ,获得积分10
40秒前
chinluo完成签到 ,获得积分10
41秒前
大白完成签到,获得积分10
45秒前
小稻草人完成签到,获得积分10
46秒前
49秒前
xjy1521完成签到,获得积分10
52秒前
jingjing完成签到,获得积分20
53秒前
高手发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226987
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734