亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CBNet: A Composite Backbone Network Architecture for Object Detection

骨干网 计算机科学 探测器 目标检测 构造(python库) 人工智能 模式识别(心理学) 计算机网络 电信
作者
Tingting Liang,Xiaojie Chu,Yudong Liu,Yongtao Wang,Zhi Tang,Wei-Ta Chu,Jingdong Chen,Haibin Ling
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 6893-6906 被引量:120
标识
DOI:10.1109/tip.2022.3216771
摘要

Modern top-performing object detectors depend heavily on backbone networks, whose advances bring consistent performance gains through exploring more effective network structures. In this paper, we propose a novel and flexible backbone framework, namely CBNet, to construct high-performance detectors using existing open-source pre-trained backbones under the pre-training fine-tuning paradigm. In particular, CBNet architecture groups multiple identical backbones, which are connected through composite connections. Specifically, it integrates the high- and low-level features of multiple identical backbone networks and gradually expands the receptive field to more effectively perform object detection. We also propose a better training strategy with auxiliary supervision for CBNet-based detectors. CBNet has strong generalization capabilities for different backbones and head designs of the detector architecture. Without additional pre-training of the composite backbone, CBNet can be adapted to various backbones (i.e., CNN-based vs. Transformer-based) and head designs of most mainstream detectors (i.e., one-stage vs. two-stage, anchor-based vs. anchor-free-based). Experiments provide strong evidence that, compared with simply increasing the depth and width of the network, CBNet introduces a more efficient, effective, and resource-friendly way to build high-performance backbone networks. Particularly, our CB-Swin-L achieves 59.4% box AP and 51.6% mask AP on COCO test-dev under the single-model and single-scale testing protocol, which are significantly better than the state-of-the-art results (i.e., 57.7% box AP and 50.2% mask AP) achieved by Swin-L, while reducing the training time by $6\times $ . With multi-scale testing, we push the current best single model result to a new record of 60.1% box AP and 52.3% mask AP without using extra training data. Code is available at https://github.com/VDIGPKU/CBNetV2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
26秒前
jimmy_bytheway完成签到,获得积分0
1分钟前
1分钟前
dovejingling完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
taku完成签到 ,获得积分10
2分钟前
Jasper应助tylerli采纳,获得10
2分钟前
poki完成签到 ,获得积分10
3分钟前
蚂蚁牙黑完成签到 ,获得积分10
3分钟前
科研通AI5应助温暖的夏波采纳,获得10
3分钟前
香蕉觅云应助wawa采纳,获得10
4分钟前
4分钟前
tylerli发布了新的文献求助10
4分钟前
wenbinvan完成签到,获得积分0
4分钟前
Bingtao_Lian完成签到 ,获得积分10
4分钟前
CipherSage应助du采纳,获得10
4分钟前
5分钟前
du发布了新的文献求助10
5分钟前
du完成签到,获得积分10
5分钟前
5分钟前
脑洞疼应助科研通管家采纳,获得50
5分钟前
arsenal完成签到 ,获得积分10
5分钟前
科目三应助Frank采纳,获得10
6分钟前
6分钟前
量子星尘发布了新的文献求助30
6分钟前
Frank发布了新的文献求助10
6分钟前
科研通AI2S应助朱宣诚采纳,获得10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
JamesPei应助朱宣诚采纳,获得10
6分钟前
7分钟前
7分钟前
朱宣诚发布了新的文献求助10
7分钟前
GPTea应助科研通管家采纳,获得10
7分钟前
GPTea应助科研通管家采纳,获得10
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
酷波er应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4945273
求助须知:如何正确求助?哪些是违规求助? 4209809
关于积分的说明 13085944
捐赠科研通 3989948
什么是DOI,文献DOI怎么找? 2184397
邀请新用户注册赠送积分活动 1199739
关于科研通互助平台的介绍 1113097