已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Three-dimensional reconstruction using SFM for actual pedestrian classification

计算机科学 行人 人工智能 模式识别(心理学) 计算机视觉 运输工程 工程类
作者
Francisco Gomez-Donoso,Julio Castano-Amoros,Felix Escalona,Miguel Cazorla
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 119006-119006 被引量:1
标识
DOI:10.1016/j.eswa.2022.119006
摘要

In recent years, the popularity of intelligent and autonomous vehicles has grown notably. In fact, there already exist commercial models with a high degree of autonomy as regards self-driving capabilities. A key feature for this kind of vehicle is object detection, which is commonly performed in 2D space. This has some inherent issues as an object and the depiction of such an object would be classified as the actual object, which is inadequate since urban environments are full of billboards, printed adverts and posters that would likely make these systems fail. In order to overcome this problem, a 3D sensor could be leveraged, although this would make the platform more expensive, energy inefficient and computationally complex. Thus, we propose the use of structure from motion to reconstruct the three-dimensional information of the scene from a set of images, and merge the 2D and 3D data to differentiate actual objects from depictions. As expected, our approach is able to work with a regular color camera. No 3D sensors whatsoever are required. As the experiments confirm, our approach is able to distinguish between actual pedestrians and depictions of them more than 87% of times in synthetic and real-world tests in the worst scenarios, while the accuracy is of almost 98% in the best case. • A method to robustly tell apart actual objects from depictions in urban environments. • The method uses deep learning algorithms with pattern matching and analytical methods. • Exhaustive experimentation on synthetic, real data and a state of the art dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈平安发布了新的文献求助10
2秒前
llxka完成签到,获得积分10
2秒前
鲜艳的仙人掌完成签到,获得积分10
4秒前
六初完成签到 ,获得积分10
10秒前
充电宝应助寂寞致幻采纳,获得10
10秒前
12秒前
lee完成签到,获得积分10
12秒前
12秒前
hehehehe发布了新的文献求助10
16秒前
16秒前
HEIKU应助科研通管家采纳,获得10
17秒前
HEIKU应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
KK发布了新的文献求助10
17秒前
寂寞致幻发布了新的文献求助10
21秒前
ypd0528X完成签到,获得积分10
21秒前
彪壮的银耳汤完成签到 ,获得积分10
25秒前
星辰大海应助寂寞致幻采纳,获得10
29秒前
兼听则明完成签到,获得积分10
29秒前
29秒前
完美世界应助不见高山采纳,获得10
34秒前
FashionBoy应助陈平安采纳,获得10
34秒前
35秒前
35秒前
共享精神应助莫倦采纳,获得10
38秒前
haiqi完成签到,获得积分10
39秒前
39秒前
zht完成签到,获得积分10
41秒前
hehehehe完成签到,获得积分10
47秒前
zz完成签到,获得积分10
49秒前
49秒前
Jasper应助whb666采纳,获得10
51秒前
聪明可爱小绘理完成签到,获得积分10
53秒前
haiqi发布了新的文献求助10
55秒前
56秒前
58秒前
天天快乐应助魏阳虹采纳,获得10
58秒前
牛犊完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792373
求助须知:如何正确求助?哪些是违规求助? 3336567
关于积分的说明 10281481
捐赠科研通 3053280
什么是DOI,文献DOI怎么找? 1675560
邀请新用户注册赠送积分活动 803549
科研通“疑难数据库(出版商)”最低求助积分说明 761457