亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal channel and frequency band‐based feature selection for motor imagery electroencephalogram classification

运动表象 脑-机接口 计算机科学 模式识别(心理学) 特征提取 人工智能 特征选择 支持向量机 频道(广播) 特征(语言学) 脑电图 频带 语音识别 哲学 精神科 语言学 计算机网络 带宽(计算) 心理学
作者
Ming Meng,Zhichao Dong,Yunyuan Gao,Qingshan She
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:33 (2): 670-679 被引量:8
标识
DOI:10.1002/ima.22823
摘要

Abstract Common spatial pattern (CSP) is a widely adopted method for electroencephalogram (EEG) feature extraction in brain‐computer interface (BCI) based on motor imagery. Bandpass‐filtering EEG into several subbands related to brain activity tasks is an effective approach to improve the performance of CSP based algorithm. However, this approach tends to suffer the over‐fitting problem because of the increase in feature dimension. Therefore, we proposed an optimal channel and frequency band‐based CSP feature selection method in this paper. Firstly, the correlation coefficient was calculated to select the optimal channels, and these channels were bandpass‐filtered into multiple overlapping subbands. The subbands with higher power spectrum density were chosen for CSP feature extraction. Next, the pair‐wise relevance was utilized to remove subband features with less difference. And then the screened subband features were combined with features extracted from the broadband signal. The Fisher ratio was exploited to carry out further feature selection. Finally, a support vector machine (SVM) was trained to classify the selected CSP features. An experimental study was implemented on BCI competition III dataset IVa and BCI competition IV dataset 1. The average classification accuracy reached 89.33% and 84.08%, which indicated the rationality and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
浮曳发布了新的文献求助10
13秒前
16秒前
19秒前
YY发布了新的文献求助10
21秒前
23秒前
冷酷愚志完成签到,获得积分10
28秒前
29秒前
浮曳完成签到,获得积分10
37秒前
羽生结弦的馨馨完成签到,获得积分10
42秒前
55秒前
56秒前
1分钟前
都市隶人完成签到,获得积分20
1分钟前
桐桐应助沁沁沁采纳,获得10
1分钟前
1分钟前
zzzzzz发布了新的文献求助10
1分钟前
olekravchenko发布了新的文献求助10
1分钟前
msn00完成签到,获得积分10
1分钟前
沁沁沁完成签到,获得积分10
1分钟前
1分钟前
沁沁沁发布了新的文献求助10
1分钟前
遇上就这样吧应助nassim采纳,获得50
1分钟前
彦子完成签到 ,获得积分10
1分钟前
Sea_U应助羽生结弦的馨馨采纳,获得10
1分钟前
1分钟前
月5114完成签到 ,获得积分10
1分钟前
乐观尔容发布了新的文献求助10
1分钟前
调皮怜容完成签到 ,获得积分20
2分钟前
HuiHui完成签到,获得积分10
2分钟前
都市隶人发布了新的文献求助10
2分钟前
汉堡包应助锦林采纳,获得10
2分钟前
牛八先生完成签到,获得积分10
2分钟前
2分钟前
锦林发布了新的文献求助10
2分钟前
zbzfp完成签到,获得积分10
2分钟前
2分钟前
悦耳破茧发布了新的文献求助10
2分钟前
2分钟前
锦林完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281848
捐赠科研通 3053424
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803581
科研通“疑难数据库(出版商)”最低求助积分说明 761468