Embedding transparency in artificial intelligence machine learning models: managerial implications on predicting and explaining employee turnover

可解释性 透明度(行为) 嵌入 计算机科学 人力资源管理 机器学习 人工智能 知识管理 计算机安全
作者
Soumyadeb Chowdhury,Sian Joel-Edgar,Prasanta Kumar Dey,Sudeshna Bhattacharya,Alexander A. Kharlamov
出处
期刊:International Journal of Human Resource Management [Routledge]
卷期号:34 (14): 2732-2764 被引量:55
标识
DOI:10.1080/09585192.2022.2066981
摘要

Employee turnover (ET) is a major issue faced by firms in all business sectors. Artificial intelligence (AI) machine learning (ML) prediction models can help to classify the likelihood of employees voluntarily departing from employment using historical employee datasets. However, output responses generated by these AI-based ML models lack transparency and interpretability, making it difficult for HR managers to understand the rationale behind the AI predictions. If managers do not understand how and why responses are generated by AI models based on the input datasets, it is unlikely to augment data-driven decision-making and bring value to the organisations. The main purpose of this article is to demonstrate the capability of Local Interpretable Model-Agnostic Explanations (LIME) technique to intuitively explain the ET predictions generated by AI-based ML models for a given employee dataset to HR managers. From a theoretical perspective, we contribute to the International Human Resource Management literature by presenting a conceptual review of AI algorithmic transparency and then discussing its significance to sustain competitive advantage by using the principles of resource-based view theory. We also offer a transparent AI implementation framework using LIME which will provide a useful guide for HR managers to increase the explainability of the AI-based ML models, and therefore mitigate trust issues in data-driven decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ocean完成签到,获得积分10
刚刚
1秒前
pluto应助舒适路人采纳,获得150
1秒前
科研通AI2S应助一念初见采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
鑫缘发布了新的文献求助10
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
清爽老九应助科研通管家采纳,获得20
3秒前
5秒前
在水一方应助jinjun采纳,获得10
5秒前
5秒前
搜集达人应助Ari_Kun采纳,获得10
6秒前
9秒前
9秒前
SYLH应助CG2021采纳,获得10
10秒前
10秒前
科研通AI2S应助魏伯安采纳,获得10
11秒前
团团发布了新的文献求助10
12秒前
科目三应助舒适路人采纳,获得10
13秒前
14秒前
gemini0615发布了新的文献求助10
15秒前
18秒前
小二郎应助彬子采纳,获得10
20秒前
22秒前
22秒前
斯文败类应助Esfec采纳,获得10
22秒前
科研通AI5应助张颖采纳,获得10
23秒前
23秒前
格格巫完成签到,获得积分10
23秒前
科研通AI5应助gemini0615采纳,获得20
24秒前
科研通AI5应助gemini0615采纳,获得10
24秒前
翌日曲完成签到,获得积分10
26秒前
希望天下0贩的0应助团团采纳,获得10
26秒前
27秒前
zhangyu完成签到,获得积分20
27秒前
28秒前
共享精神应助eric曾采纳,获得10
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784104
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240907
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671248
邀请新用户注册赠送积分活动 800203
科研通“疑难数据库(出版商)”最低求助积分说明 759241