已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-throughput discovery of chemical structure-polarity relationships combining automation and machine-learning techniques

极性(国际关系) 自动化 计算机科学 人工智能 标准化 薄层色谱法 吞吐量 机器学习 化学 色谱法 生物系统 工程类 操作系统 生物 机械工程 电信 无线 细胞 生物化学
作者
Hao Xu,Jinglong Lin,Qianyi Liu,Yuntian Chen,Jianning Zhang,Yang Yang,Michael C. Young,Yan Xu,Dongxiao Zhang,Fanyang Mo
出处
期刊:Chem [Elsevier BV]
卷期号:8 (12): 3202-3214 被引量:9
标识
DOI:10.1016/j.chempr.2022.08.008
摘要

•An automated platform is invented to conduct high-throughput TLC analysis •4,944 standardized Rf values from 387 compounds under 17 solvent conditions •A machine-learning model facilitates Rf prediction and chromatographic separation •Higher topological polar surface area (TPSA) contributes to smaller Rf values As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography (TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (Rf). The trained ML models are able to predict the Rf value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data. As an essential attribute of organic compounds, polarity has a profound influence on many molecular properties. Thin-layer chromatography (TLC) represents a commonly used technique for empirical polarity estimations. Current TLC techniques need repetitive attempts to obtain suitable development conditions and have low reproducibility due to a low degree of standardization. Herein, we describe an automated system to conduct TLC analysis automatically, facilitating high-throughput collection of a large quantity of experimental data under standardized conditions. Using this dataset, machine-learning (ML) methods are employed to construct surrogate models correlating organic compound structures and their polarity reflected by retardation factor (Rf). The trained ML models are able to predict the Rf value curve of organic compounds in different solvent combinations with high accuracy, thus providing general guidelines for the selection of purification conditions and expediting the generation and analysis of quality TLC data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Clarenceed采纳,获得10
2秒前
俭朴的跳跳糖完成签到 ,获得积分10
3秒前
研友-wbg-LjbQIL完成签到,获得积分10
3秒前
桐桐应助kali采纳,获得10
3秒前
科研通AI2S应助dt采纳,获得10
3秒前
7秒前
9秒前
9秒前
11秒前
songnvshi完成签到 ,获得积分10
11秒前
11秒前
Beyond095完成签到 ,获得积分10
12秒前
可爱的函函应助徐昊楠采纳,获得10
12秒前
asdasd发布了新的文献求助10
13秒前
abbb完成签到,获得积分20
14秒前
caofan发布了新的文献求助10
15秒前
LIUDEHUA发布了新的文献求助10
16秒前
3712发布了新的文献求助10
16秒前
完美世界应助SK采纳,获得30
17秒前
18秒前
科目三应助小宋采纳,获得10
20秒前
21秒前
caofan完成签到,获得积分10
25秒前
涔雨完成签到,获得积分10
26秒前
光之剑完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
阿柴_Htao完成签到,获得积分10
30秒前
31秒前
32秒前
Mindray完成签到,获得积分0
32秒前
mori发布了新的文献求助10
32秒前
33秒前
34秒前
SK发布了新的文献求助30
35秒前
呆萌不正完成签到 ,获得积分10
36秒前
研友_5Z4ZA5完成签到,获得积分10
37秒前
吴zzzz完成签到,获得积分10
38秒前
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784640
求助须知:如何正确求助?哪些是违规求助? 3329746
关于积分的说明 10243399
捐赠科研通 3045072
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800458
科研通“疑难数据库(出版商)”最低求助积分说明 759391