控制理论(社会学)
计算机科学
参数统计
动态规划
自适应控制
理论(学习稳定性)
观察员(物理)
趋同(经济学)
李雅普诺夫函数
鲁棒控制
Lyapunov稳定性
控制工程
控制系统
控制(管理)
数学
工程类
非线性系统
算法
人工智能
统计
物理
量子力学
机器学习
电气工程
经济
经济增长
作者
Fuyu Zhao,Weinan Gao,Tengfei Liu,Zhong‐Ping Jiang
标识
DOI:10.1109/tcns.2022.3186623
摘要
In this article, an event-triggered output-feedback adaptive optimal control approach is proposed for large-scale systems with parametric and dynamic uncertainties through robust adaptive dynamic programming and small-gain techniques. By using the input and output data, the unmeasurable states are reconstructed instead of designing a Luenberger observer. To save the communication resources and reduce the number of control updates, an event-based feedback control policy is learned based on policy iteration and value iteration, respectively. The closed-loop stability and the convergence of the proposed algorithms are analyzed by using Lyapunov stability theory and small-gain techniques. A practical example of multimachine power systems with governor controllers is given to demonstrate the effectiveness of the proposed methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI