Developing and evaluating a machine-learning-based algorithm to predict the incidence and severity of ARDS with continuous non-invasive parameters from ordinary monitors and ventilators

急性呼吸窘迫综合征 医学 急性呼吸窘迫 入射(几何) 机械通风 机器学习 接收机工作特性 病历 算法 重症监护医学 急诊医学 计算机科学 外科 数学 内科学 几何学
作者
Wenzhu Wu,Yalin Wang,Junquan Tang,Ming Yu,Jing Yuan,Guang Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:230: 107328-107328 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107328
摘要

Major observational studies report that the mortality rate of acute respiratory distress syndrome (ARDS) is close to 40%. Different treatment strategies are required for each patient, according to the degree of ARDS. Early prediction of ARDS is helpful to implement targeted drug therapy and mechanical ventilation strategies for patients with different degrees of potential ARDS. In this paper, a new dynamic prediction machine learning model for ARDS incidence and severity is established and evaluated based on 28 parameters from ordinary monitors and ventilators, capable of dynamic prediction of the incidence and severity of ARDS. This new method is expected to meet the clinical practice requirements of user-friendliness and timeliness for wider application.A total of 4738 hospitalized patients who required ICU care from 159 hospitals are employed in this study. The models are trained by standardized data from electronic medical records. There are 28 structured, continuous non-invasive parameters that are recorded every hour. Seven machine learning models using only continuous, non-invasive parameters are developed for dynamic prediction and compared with methods trained by complete parameters and the traditional risk adjustment method (i.e., oxygenation saturation index method).The optimal prediction performance (area under the curve) of the ARDS incidence and severity prediction models built using continuous noninvasive parameters reached0.8691 and 0.7765, respectively. In terms of mild and severe ARDS prediction, the AUC values are both above 0.85. The performance of the model using only continuous non-invasive parameters have an AUC of 0.0133 lower, in comparison with that employing a complete feature set, including continuous non-invasive parameters, demographic information, laboratory parameters and clinical natural language text.A machine learning method was developed in this study using only continuous non-invasive parameters for ARDS incidence and severity prediction. Because the continuous non-invasive parameters can be easily obtained from ordinary monitors and ventilators, the method presented in this study is friendly and convenient to use. It is expected to be applied in pre-hospital setting for early ARDS warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果子完成签到,获得积分20
1秒前
1秒前
友好凡霜发布了新的文献求助10
2秒前
2秒前
寒冷乐驹发布了新的文献求助10
3秒前
所所应助TYolo采纳,获得10
4秒前
房雍发布了新的文献求助30
7秒前
CC完成签到,获得积分10
7秒前
lululu0212完成签到,获得积分10
8秒前
胡霖完成签到,获得积分10
9秒前
传奇3应助平淡茈采纳,获得10
9秒前
11秒前
CipherSage应助qianyuan采纳,获得30
13秒前
fourfor完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
阡陌完成签到,获得积分10
16秒前
baibai完成签到,获得积分10
17秒前
阳光飞槐发布了新的文献求助10
18秒前
44发布了新的文献求助30
18秒前
ED应助zyshao采纳,获得10
19秒前
科研通AI5应助Olivia采纳,获得10
20秒前
房雍完成签到,获得积分10
21秒前
25秒前
26秒前
27秒前
28秒前
受伤勒完成签到,获得积分20
28秒前
心心完成签到,获得积分10
30秒前
耗尽完成签到,获得积分10
30秒前
情怀应助阳光飞槐采纳,获得10
30秒前
徐佳达完成签到,获得积分10
31秒前
S1008发布了新的文献求助10
31秒前
脑洞疼应助嘀嘀嘀采纳,获得10
32秒前
今后应助嘀嘀嘀采纳,获得10
32秒前
平淡茈发布了新的文献求助10
32秒前
欣喜俊驰发布了新的文献求助10
32秒前
心心发布了新的文献求助10
33秒前
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214