已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification of Salt Marsh Vegetation in the Yangtze River Delta of China Using the Pixel-Level Time-Series and XGBoost Algorithm

盐沼 互花米草 湿地 植被(病理学) 环境科学 沼泽 遥感 归一化差异植被指数 时间序列 自然地理学 系列(地层学) 像素 水文学(农业) 地理 气候变化 生态学 地质学 计算机科学 人工智能 机器学习 海洋学 古生物学 岩土工程 病理 医学 生物
作者
Jiahao Zheng,Chao Sun,Saishuai Zhao,Ming Hu,Shu Zhang,Jialin Li
出处
期刊:Journal of remote sensing [American Association for the Advancement of Science]
卷期号:3 被引量:12
标识
DOI:10.34133/remotesensing.0036
摘要

Salt marshes are one of the world's most valuable and vulnerable ecosystems. The accurate and timely monitoring of the distribution and composition of salt marsh vegetation is crucial. With the increasing number of archived multi-source images, the time-series remote sensing approach could play an important role in monitoring coastal environments. However, effective construction and application of the time series over coastal areas remains challenging because satellite observations are severely affected by cloud weather. Here, we constructed a pixel-level time series by intercalibrating the Landsat images from different sensors. Based on the time series, the XGBoost algorithm was introduced for salt marsh vegetation classification. The feasibility and stability for the classification using the pixel-level time-series and XGBoost algorithm (PTSXGB) were evaluated. Five types of salt marsh vegetation from the 3 sites in the Yangtze River Delta, China, were classified. The results demonstrated that (a) the intercalibration for the Landsat images from different sensors is necessary for increasing the number of available observations and reducing the differences among spectral reflectances. (b) The salt marsh vegetation classification using PTSXGB achieved a favorable performance, with an overall accuracy of 81.37 ± 2.66%. The classification was especially excellent for the widespread Spartina alterniflora and Scirpus mariqueter . (c) Compared with the classifications using single images, the classifications using PTSXGB were more stable for different periods, with the mean absolute difference in the overall accuracy less than 3.90%. Therefore, PTSXGB is expected to monitor salt marsh vegetation's long-term dynamics, facilitating effective ecological conservation for the coastal areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮灵犀发布了新的文献求助10
3秒前
winfan完成签到 ,获得积分10
3秒前
山复尔尔完成签到 ,获得积分10
4秒前
kimini发布了新的文献求助30
4秒前
英俊芷完成签到 ,获得积分10
4秒前
byebyettt发布了新的文献求助10
8秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
聪明的云完成签到 ,获得积分10
14秒前
14秒前
16秒前
完美世界应助诸怀曼采纳,获得10
16秒前
搜集达人应助Julo采纳,获得10
18秒前
Gavin完成签到,获得积分10
18秒前
byebyettt完成签到,获得积分10
19秒前
LHC发布了新的文献求助10
19秒前
晶晶完成签到,获得积分10
20秒前
宏1234完成签到,获得积分10
20秒前
酷波er应助DL采纳,获得10
22秒前
26秒前
上官若男应助瑜軒采纳,获得10
27秒前
今后应助LHC采纳,获得10
28秒前
科研通AI5应助1245采纳,获得10
35秒前
深情安青应助kkk采纳,获得10
38秒前
w1x2123完成签到,获得积分0
39秒前
今天做实验了吗完成签到 ,获得积分10
40秒前
42秒前
曼凡发布了新的文献求助10
42秒前
seankang完成签到,获得积分10
46秒前
Julo发布了新的文献求助10
46秒前
46秒前
Lucas应助研友_Zzaoqn采纳,获得10
50秒前
顾矜应助讲故事采纳,获得10
50秒前
multimodal发布了新的文献求助10
53秒前
57秒前
Lucy发布了新的文献求助20
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4762644
求助须知:如何正确求助?哪些是违规求助? 4102044
关于积分的说明 12693036
捐赠科研通 3818316
什么是DOI,文献DOI怎么找? 2107614
邀请新用户注册赠送积分活动 1132183
关于科研通互助平台的介绍 1011345