Classification of Salt Marsh Vegetation in the Yangtze River Delta of China Using the Pixel-Level Time-Series and XGBoost Algorithm

盐沼 互花米草 湿地 植被(病理学) 环境科学 沼泽 遥感 归一化差异植被指数 时间序列 自然地理学 系列(地层学) 像素 水文学(农业) 地理 气候变化 生态学 地质学 计算机科学 人工智能 机器学习 海洋学 古生物学 岩土工程 病理 医学 生物
作者
Jiahao Zheng,Chao Sun,Saishuai Zhao,Ming Hu,Shu Zhang,Jialin Li
出处
期刊:Journal of remote sensing [American Association for the Advancement of Science]
卷期号:3 被引量:3
标识
DOI:10.34133/remotesensing.0036
摘要

Salt marshes are one of the world's most valuable and vulnerable ecosystems. The accurate and timely monitoring of the distribution and composition of salt marsh vegetation is crucial. With the increasing number of archived multi-source images, the time-series remote sensing approach could play an important role in monitoring coastal environments. However, effective construction and application of the time series over coastal areas remains challenging because satellite observations are severely affected by cloud weather. Here, we constructed a pixel-level time series by intercalibrating the Landsat images from different sensors. Based on the time series, the XGBoost algorithm was introduced for salt marsh vegetation classification. The feasibility and stability for the classification using the pixel-level time-series and XGBoost algorithm (PTSXGB) were evaluated. Five types of salt marsh vegetation from the 3 sites in the Yangtze River Delta, China, were classified. The results demonstrated that (a) the intercalibration for the Landsat images from different sensors is necessary for increasing the number of available observations and reducing the differences among spectral reflectances. (b) The salt marsh vegetation classification using PTSXGB achieved a favorable performance, with an overall accuracy of 81.37 ± 2.66%. The classification was especially excellent for the widespread Spartina alterniflora and Scirpus mariqueter . (c) Compared with the classifications using single images, the classifications using PTSXGB were more stable for different periods, with the mean absolute difference in the overall accuracy less than 3.90%. Therefore, PTSXGB is expected to monitor salt marsh vegetation's long-term dynamics, facilitating effective ecological conservation for the coastal areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助细腻的山水采纳,获得10
刚刚
112完成签到,获得积分10
1秒前
1秒前
和平发展完成签到,获得积分10
1秒前
小菜鸡一枚完成签到,获得积分10
2秒前
miumiu发布了新的文献求助10
4秒前
4秒前
你hao完成签到,获得积分10
6秒前
7秒前
李健应助miumiu采纳,获得10
7秒前
科研通AI5应助小豪采纳,获得10
8秒前
9秒前
荔枝完成签到 ,获得积分10
9秒前
tekuko完成签到,获得积分20
9秒前
9秒前
肖永辉完成签到,获得积分10
11秒前
00发布了新的文献求助10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
张emo完成签到,获得积分10
13秒前
夏青荷发布了新的文献求助10
16秒前
土豪的铭发布了新的文献求助10
17秒前
18秒前
00完成签到,获得积分10
19秒前
JY发布了新的文献求助10
20秒前
Wizard发布了新的文献求助10
20秒前
Ava应助kingcoming采纳,获得10
20秒前
cheney完成签到 ,获得积分10
21秒前
23秒前
luluyu完成签到,获得积分10
23秒前
27秒前
袁梦完成签到,获得积分10
28秒前
SciGPT应助快乐的紫寒采纳,获得10
29秒前
29秒前
杉杉发布了新的文献求助10
30秒前
个木发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780526
求助须知:如何正确求助?哪些是违规求助? 3326007
关于积分的说明 10225152
捐赠科研通 3041089
什么是DOI,文献DOI怎么找? 1669166
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669