Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review

神经形态工程学 材料科学 计算机科学 晶体管 纳米技术 电气工程 电压 人工神经网络 工程类 人工智能
作者
Sankar Prasad Bag,Suyoung Lee,Jaeyoon Song,Jinsik Kim
出处
期刊:Biosensors [Multidisciplinary Digital Publishing Institute]
卷期号:14 (3): 150-150 被引量:1
标识
DOI:10.3390/bios14030150
摘要

Hydrogel-gated synaptic transistors offer unique advantages, including biocompatibility, tunable electrical properties, being biodegradable, and having an ability to mimic biological synaptic plasticity. For processing massive data with ultralow power consumption due to high parallelism and human brain-like processing abilities, synaptic transistors have been widely considered for replacing von Neumann architecture-based traditional computers due to the parting of memory and control units. The crucial components mimic the complex biological signal, synaptic, and sensing systems. Hydrogel, as a gate dielectric, is the key factor for ionotropic devices owing to the excellent stability, ultra-high linearity, and extremely low operating voltage of the biodegradable and biocompatible polymers. Moreover, hydrogel exhibits ionotronic functions through a hybrid circuit of mobile ions and mobile electrons that can easily interface between machines and humans. To determine the high-efficiency neuromorphic chips, the development of synaptic devices based on organic field effect transistors (OFETs) with ultra-low power dissipation and very large-scale integration, including bio-friendly devices, is needed. This review highlights the latest advancements in neuromorphic computing by exploring synaptic transistor developments. Here, we focus on hydrogel-based ionic-gated three-terminal (3T) synaptic devices, their essential components, and their working principle, and summarize the essential neurodegenerative applications published recently. In addition, because hydrogel-gated FETs are the crucial members of neuromorphic devices in terms of cutting-edge synaptic progress and performances, the review will also summarize the biodegradable and biocompatible polymers with which such devices can be implemented. It is expected that neuromorphic devices might provide potential solutions for the future generation of interactive sensation, memory, and computation to facilitate the development of multimodal, large-scale, ultralow-power intelligent systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
menxiaomei发布了新的文献求助30
1秒前
key关闭了key文献求助
6秒前
懒洋洋完成签到,获得积分10
10秒前
11秒前
科研通AI2S应助SEM小菜鸡采纳,获得10
13秒前
15秒前
赘婿应助zlimu采纳,获得10
16秒前
qingkong完成签到 ,获得积分10
16秒前
西西完成签到,获得积分10
16秒前
17秒前
menxiaomei完成签到,获得积分10
17秒前
19秒前
ffff完成签到,获得积分10
19秒前
朽木完成签到,获得积分10
20秒前
zzz发布了新的文献求助10
21秒前
情怀应助陈补天采纳,获得10
21秒前
若邻发布了新的文献求助10
22秒前
地三鲜发布了新的文献求助10
22秒前
科研通AI5应助qq.com采纳,获得10
24秒前
大个应助无限雪巧2采纳,获得10
24秒前
24秒前
26秒前
糖醋花孙米完成签到,获得积分10
28秒前
seminary发布了新的文献求助10
29秒前
hana应助瘦瘦友儿采纳,获得10
29秒前
冬东东发布了新的文献求助30
30秒前
Orange应助会飞的史迪奇采纳,获得10
30秒前
如意完成签到,获得积分10
30秒前
橙子完成签到 ,获得积分10
33秒前
科研通AI5应助正直的安南采纳,获得10
34秒前
35秒前
seminary完成签到,获得积分10
39秒前
晴雨完成签到,获得积分10
40秒前
40秒前
41秒前
43秒前
雨曦完成签到,获得积分10
45秒前
陈永伟发布了新的文献求助10
46秒前
47秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944