Quantitative analysis of sintered NdFeB backscattered electron images based on a general large model

钕磁铁 材料科学 电子 冶金 物理 磁铁 机械工程 工程类 核物理学
作者
Qichao Liang,T. S. Zhao,Guoping Hu,Xianglong Zhou,Haibo Xu,Bo Jiang,Qiang Ma,Tao Qi
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:987: 174196-174196 被引量:2
标识
DOI:10.1016/j.jallcom.2024.174196
摘要

The macroscopic performance of magnets is determined by their microscopic structure, quantifying the microscopic image of magnets is of great importance for studying its performance. Backscattered electron images of sintered NdFeB magnets contain information about the size, morphology, and distribution of grains and the grain boundary phases. Traditional methods for quantifying images involve labor-intensive manual measurements, digital image processing with complex contour extraction algorithms, and convolutional neural network algorithms that require extensive image data labeling. In this study, we introduced a general vision large model called Segment Anything Model(SAM) for image segmentation. SAM enables rapid and accurate segmentation of grains and grain boundary phases without the need for complex algorithms and tedious data labeling. From the segmented mask images, we extracted various data related to the performance of magnets, including the centroid positions, perimeter, area, sphericity, roughness, and principal axis directions of all grains. We also obtained information on the distances and angles between adjacent grains and the relevant parameters affecting magnet performance, such as the number and volume of grain boundary phases. We conducted comprehensive quantification of the backscattered images for three different magnets and provided reasonable explanations for the differences in magnet performance. This model offers superior speed and accuracy in image quantification compared to traditional algorithms and can be used for the rapid analysis of large datasets. It represents an essential method and trend for the quantification of image data in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研牛马完成签到,获得积分10
3秒前
3秒前
科研通AI5应助study采纳,获得10
4秒前
妮妮发布了新的文献求助10
6秒前
一啊呀完成签到,获得积分10
6秒前
柱子完成签到,获得积分10
7秒前
Re发布了新的文献求助10
8秒前
9秒前
10秒前
桐桐应助啊哭采纳,获得10
11秒前
yetong完成签到 ,获得积分10
11秒前
共享精神应助shinble采纳,获得10
12秒前
小白发布了新的文献求助10
13秒前
思源应助Veigar采纳,获得10
14秒前
songjin发布了新的文献求助10
15秒前
15秒前
zhaohu47完成签到,获得积分10
16秒前
19秒前
19秒前
852应助Mona采纳,获得10
20秒前
寒冷的咖啡完成签到,获得积分10
20秒前
study发布了新的文献求助10
20秒前
wjk关注了科研通微信公众号
23秒前
CodeCraft应助Yaon-Xu采纳,获得10
23秒前
杨柳发布了新的文献求助10
23秒前
23秒前
23秒前
25秒前
25秒前
在水一方应助追寻的梦凡采纳,获得10
26秒前
27秒前
27秒前
27秒前
科研通AI5应助bbb采纳,获得10
29秒前
29秒前
29秒前
shiyin发布了新的文献求助10
30秒前
30秒前
科研通AI5应助景绝义采纳,获得10
31秒前
Raye发布了新的文献求助20
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805231
求助须知:如何正确求助?哪些是违规求助? 3350217
关于积分的说明 10347782
捐赠科研通 3066093
什么是DOI,文献DOI怎么找? 1683536
邀请新用户注册赠送积分活动 809047
科研通“疑难数据库(出版商)”最低求助积分说明 765205