A reinforcement learning-Variable neighborhood search method for the capacitated Vehicle Routing Problem

可变邻域搜索 强化学习 水准点(测量) 元启发式 计算机科学 数学优化 变量(数学) 多武装匪徒 局部搜索(优化) 车辆路径问题 方案(数学) 布线(电子设计自动化) 人工智能 机器学习 数学 大地测量学 数学分析 后悔 地理 计算机网络
作者
Panagiotis Kalatzantonakis,Angelo Sifaleras,Nikolaos Samaras
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 118812-118812 被引量:48
标识
DOI:10.1016/j.eswa.2022.118812
摘要

Finding the best sequence of local search operators that yields the optimal performance of Variable Neighborhood Search (VNS) is an important open research question in the field of metaheuristics. This paper proposes a Reinforcement Learning method to address this question. We introduce a new hyperheuristic scheme, termed Bandit VNS, inspired by the Multi-Armed Bandit (MAB), a particular type of a single state reinforcement learning problem. In Bandit VNS, we utilize the General Variable Neighborhood Search metaheuristic and enhance it by a hyperheuristic strategy. We examine several variations of the Upper Confidence Bound algorithm to create a reliable strategy for adaptive neighborhood selection. Furthermore, we utilize Adaptive Windowing, a state of the art algorithm to estimate and detect changes in the data stream. Bandit VNS is designed for effective parallelization and encourages cooperation between agents to produce the best solution quality. We demonstrate this concept’s advantages in accuracy and speed by extensive experimentation using the Capacitated Vehicle Routing Problem. We compare the novel scheme’s performance against the conventional General Variable Neighborhood Search metaheuristic in terms of the CPU time and solution quality. The Bandit VNS method shows excellent results and reaches significantly higher performance metrics when applied to well-known benchmark instances. Our experiments show that, our approach achieves an improvement of more than 25% in solution quality when compared to the General Variable Neighborhood Search method using standard library instances of medium and large size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzq发布了新的文献求助10
1秒前
顾矜应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
zho应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得30
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
Freya应助科研通管家采纳,获得10
3秒前
优美的跳跳糖完成签到 ,获得积分10
3秒前
3秒前
zorro3574完成签到,获得积分10
4秒前
zzz完成签到,获得积分10
4秒前
YP完成签到,获得积分10
4秒前
似水流年完成签到,获得积分10
5秒前
初空月儿完成签到,获得积分10
5秒前
5秒前
6秒前
盒子完成签到,获得积分20
6秒前
sisi完成签到,获得积分10
8秒前
kash想毕业发布了新的文献求助10
10秒前
11秒前
pericles完成签到,获得积分10
11秒前
yy完成签到,获得积分10
12秒前
12秒前
难过隶发布了新的文献求助10
12秒前
123321完成签到 ,获得积分10
13秒前
科研通AI2S应助罗rr采纳,获得10
14秒前
slk完成签到 ,获得积分10
14秒前
ldgsd完成签到,获得积分10
15秒前
卡卡西西西完成签到,获得积分10
15秒前
咕噜仔发布了新的文献求助10
15秒前
16秒前
16秒前
小奥雄完成签到,获得积分10
16秒前
16秒前
mm255发布了新的文献求助10
17秒前
研友_VZG7GZ应助Lionnn采纳,获得10
18秒前
cc完成签到,获得积分10
18秒前
天桂星完成签到,获得积分20
18秒前
吱吱完成签到,获得积分10
19秒前
科研通AI5应助博修采纳,获得10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789277
求助须知:如何正确求助?哪些是违规求助? 3334313
关于积分的说明 10269025
捐赠科研通 3050734
什么是DOI,文献DOI怎么找? 1674119
邀请新用户注册赠送积分活动 802497
科研通“疑难数据库(出版商)”最低求助积分说明 760692