过电位
析氧
催化作用
材料科学
化学工程
氢氧化物
层状双氢氧化物
钛
分解水
碳化钛
密度泛函理论
阳极
电流密度
无机化学
电极
化学
冶金
电化学
物理化学
光催化
生物化学
工程类
计算化学
物理
量子力学
作者
Fuzhan Song,Shaun Debow,Tong Zhang,Yuqin Qian,Zhi-Chao Huang-Fu,Kaylee Munns,Sydney Schmidt,Haley Fisher,Jesse B. Brown,Yanqing Su,Zachary Zander,Brendan G. DeLacy,Mark S. Mirotznik,R. L. Opila,Yi Rao
标识
DOI:10.1021/acs.jpclett.3c00655
摘要
The electrocatalytic oxygen evolution reaction (OER) is important for many renewable energy technologies. Developing cost-effective electrocatalysts with high performance remains a great challenge. Here, we successfully demonstrate our novel interface catalyst comprised of Ni3Fe1-based layered double hydroxides (Ni3Fe1-LDH) vertically immobilized on a two-dimensional MXene (Ti3C2Tx) surface. The Ni3Fe1-LDH/Ti3C2Tx yielded an anodic OER current of 100 mA cm-2 at 0.28 V versus reversible hydrogen electrode (RHE), nearly 74 times lower than that of the pristine Ni3Fe1-LDH. Furthermore, the Ni3Fe1-LDH/Ti3C2Tx catalyst requires an overpotential of only 0.31 V versus RHE to deliver an industrial-level current density as high as 1000 mA cm-2. Such excellent OER activity was attributed to the synergistic interface effect between Ni3Fe1-LDH and Ti3C2Tx. Density functional theory (DFT) results further reveal that the Ti3C2Tx support can efficiently accelerate the electron extraction from Ni3Fe1-LDH and tailor the electronic structure of catalytic sites, resulting in enhanced OER performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI