清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Siamese Inverted Residuals Network Image Steganalysis Scheme based on Deep Learning

隐写分析技术 计算机科学 人工智能 深度学习 隐写术 特征提取 卷积神经网络 残余物 模式识别(心理学) 预处理器 特征(语言学) 信息隐藏 数据挖掘 机器学习 图像(数学) 算法 哲学 语言学
作者
Hao Li,Jinwei Wang,Naixue Xiong,Yi Zhang,Athanasios V. Vasilakos,Xiangyang Luo
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (6): 1-23 被引量:5
标识
DOI:10.1145/3579166
摘要

With the rapid proliferation of urbanization, massive data in social networks are collected and aggregated in real time, making it possible for criminals to use images as a cover to spread secret information on the Internet. How to determine whether these images contain secret information is a huge challenge for multimedia computing security. The steganalysis method based on deep learning can effectively judge whether the pictures transmitted on the Internet in urban scenes contain secret information, which is of great significance to safeguarding national and social security. Image steganalysis based on deep learning has powerful learning ability and classification ability, and its detection accuracy of steganography images has surpassed that of traditional steganalysis based on manual feature extraction. In recent years, it has become a hot topic of the information hiding technology. However, the detection accuracy of existing deep learning based steganalysis methods still needs to be improved, especially when detecting arbitrary-size and multi-source images, their detection efficientness is easily affected by cover mismatch. In this manuscript, we propose a steganalysis method based on Inverse Residuals structured Siamese network (abbreviated as SiaIRNet method, Sia mese- I nverted- R esiduals- Net work Based method). The SiaIRNet method uses a siamese convolutional neural network (CNN) to obtain the residual features of subgraphs, including three stages of preprocessing, feature extraction, and classification. Firstly, a preprocessing layer with high-pass filters combined with depth-wise separable convolution is designed to more accurately capture the correlation of residuals between feature channels, which can help capture rich and effective residual features. Then, a feature extraction layer based on the Inverse Residuals structure is proposed, which improves the ability of the model to obtain residual features by expanding channels and reusing features. Finally, a fully connected layer is used to classify the cover image and the stego image features. Utilizing three general datasets, BossBase-1.01, BOWS2, and ALASKA#2, as cover images, a large number of experiments are conducted comparing with the state-of-the-art steganalysis methods. The experimental results show that compared with the classical SID method and the latest SiaStegNet method, the detection accuracy of the proposed method for 15 arbitrary-size images is improved by 15.96% and 5.86% on average, respectively, which verifies the higher detection accuracy and better adaptability of the proposed method to multi-source and arbitrary-size images in urban scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
刚刚
13秒前
冷傲半邪完成签到,获得积分10
19秒前
司空天德发布了新的文献求助10
24秒前
shirley完成签到,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
蒲蒲完成签到 ,获得积分10
27秒前
壮观的谷冬完成签到 ,获得积分0
33秒前
松鼠非鼠完成签到 ,获得积分10
34秒前
六一完成签到 ,获得积分10
35秒前
紫熊发布了新的文献求助10
54秒前
55秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
酷酷一笑发布了新的文献求助10
1分钟前
紫熊发布了新的文献求助10
1分钟前
1分钟前
cx应助搞怪莫茗采纳,获得10
1分钟前
1分钟前
紫熊发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
elisa828完成签到,获得积分10
2分钟前
紫熊发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
lod完成签到,获得积分10
3分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
3分钟前
紫熊发布了新的文献求助10
3分钟前
Liufgui应助水天一色采纳,获得10
3分钟前
fang完成签到,获得积分10
3分钟前
3分钟前
4分钟前
xiaozou55完成签到 ,获得积分10
4分钟前
紫熊发布了新的文献求助20
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015340
求助须知:如何正确求助?哪些是违规求助? 3555298
关于积分的说明 11317940
捐赠科研通 3288605
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983