Stress Detection Through Wrist-Based Electrodermal Activity Monitoring and Machine Learning

可穿戴计算机 支持向量机 机器学习 人工智能 计算机科学 压力(语言学) 智能手表 可穿戴技术 心理健康 特征提取 心理学 嵌入式系统 精神科 哲学 语言学
作者
Li Zhu,Petros Spachos,Pai Chet Ng,Yuanhao Yu,Yang Wang,Konstantinos N. Plataniotis,Dimitrios Hatzinakos
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 2155-2165 被引量:35
标识
DOI:10.1109/jbhi.2023.3239305
摘要

Stress is an inevitable part of modern life. While stress can negatively impact a person's life and health, positive and under-controlled stress can also enable people to generate creative solutions to problems encountered in their daily lives. Although it is hard to eliminate stress, we can learn to monitor and control its physical and psychological effects. It is essential to provide feasible and immediate solutions for more mental health counselling and support programs to help people relieve stress and improve their mental health. Popular wearable devices, such as smartwatches with several sensing capabilities, including physiological signal monitoring, can alleviate the problem. This work investigates the feasibility of using wrist-based electrodermal activity (EDA) signals collected from wearable devices to predict people's stress status and identify possible factors impacting stress classification accuracy. We use data collected from wrist-worn devices to examine the binary classification discriminating stress from non-stress. For efficient classification, five machine learning-based classifiers were examined. We explore the classification performance on four available EDA databases under different feature selections. According to the results, Support Vector Machine (SVM) outperforms the other machine learning approaches with an accuracy of 92.9 for stress prediction. Additionally, when the subject classification included gender information, the performance analysis showed significant differences between males and females. We further examine a multimodal approach for stress classifications. The results indicate that wearable devices with EDA sensors have a great potential to provide helpful insight for improved mental health monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huihuiyve完成签到,获得积分10
1秒前
pluto应助lam采纳,获得10
2秒前
调皮黑猫应助峰回路转采纳,获得50
2秒前
3秒前
海迪发布了新的文献求助10
3秒前
韩瑶发布了新的文献求助10
3秒前
平常的毛豆应助南栀采纳,获得10
5秒前
Zetlynn完成签到,获得积分10
6秒前
科研通AI5应助dido采纳,获得10
7秒前
8秒前
小男孩发布了新的文献求助10
8秒前
李健的小迷弟应助gloval采纳,获得10
9秒前
在水一方应助哇哈哈采纳,获得10
9秒前
黑大帅完成签到,获得积分10
10秒前
11秒前
响铃发布了新的文献求助10
13秒前
闪闪火车完成签到 ,获得积分10
13秒前
15秒前
jubaoswag发布了新的文献求助20
15秒前
pluto应助lam采纳,获得10
16秒前
16秒前
sun完成签到,获得积分10
20秒前
科研通AI5应助AQ采纳,获得10
21秒前
22秒前
十一完成签到,获得积分10
22秒前
充电宝应助踏实口红采纳,获得10
23秒前
24秒前
zhoutiantian完成签到 ,获得积分10
25秒前
小男孩完成签到,获得积分10
26秒前
26秒前
KanmenRider发布了新的文献求助10
26秒前
ZZZZZ发布了新的文献求助10
28秒前
轻松的小虾米完成签到,获得积分10
28秒前
28秒前
科研通AI5应助赖道之采纳,获得10
29秒前
饭饭发布了新的文献求助10
30秒前
Lemon发布了新的文献求助10
31秒前
kezhang完成签到,获得积分10
32秒前
郭医生发布了新的文献求助10
32秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742