Ultralow-Temperature Carboxylate Electrolyte for High-Voltage Lithium Metal Batteries

材料科学 羧酸盐 金属锂 电解质 锂(药物) 金属 无机化学 化学工程 冶金 电极 有机化学 物理化学 化学 医学 工程类 内分泌学
作者
Weilong Kong,Heng Zhang,Yuxin Zhou,Yejuan Xue,Longjin Jiang,Hongfa Xiang,Zhimei Huang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c08517
摘要

Carbonate-based electrolytes possess high oxidative stability and solvation ability to Li+ in Li metal batteries (LMBs). However, they face significant challenges under cryogenic temperatures, including the sluggish reaction kinetics, uneven Li deposition, and severe interfacial side reactions, especially under the elevated cutoff voltages. Carboxylates usually have lower viscosity and freezing points. However, they still face low oxidative stability and poor film-forming ability. Herein, we designed an ultralow-temperature electrolyte by using a gamma-butyrolactone (GBL) and isobutyronitrile (iBN) mixed electrolyte to be used in high-voltage LMBs. The result demonstrated that the participation of iBN in the Li+ solvation structure could greatly improve the ion transfer kinetics and oxidation stability of the electrolyte through the interaction of C≡N with transition metal on the cathode. Combined with the lithium nitrate (LiNO3) additive, the tame electrolyte exhibits high interfacial stability at a temperature range of -60 to -20 °C by forming dense and highly ionic conductive interfacial films. The assembled Li||LiNi0.8Co0.1Mn0.1O2 cell delivered a capacity of 88.8 mAh g-1 and retained a 77.2% capacity retention after 450 cycles under -40 °C and a 4.5 V cutoff voltage. Even if the temperature decreased to -50 °C, it could still express a capacity of 89.7 mAh g-1 with a 99% capacity retention for 50 cycles, surpassing most of the works involving carbonate-based electrolytes. Therefore, combining the superiorities of carboxylate and nitrile solvents provides a promising electrolyte design insight for the ultralow-temperature LMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情情晴情情完成签到,获得积分10
1秒前
1秒前
2秒前
从容飞阳发布了新的文献求助10
2秒前
jinwaii发布了新的文献求助10
2秒前
淡淡的寄风完成签到,获得积分10
3秒前
优雅的洙完成签到,获得积分10
4秒前
5秒前
5秒前
Junehe发布了新的文献求助10
5秒前
鄂老三发布了新的文献求助10
7秒前
huan发布了新的文献求助10
8秒前
Steven发布了新的文献求助10
9秒前
Jasper应助美好眼神采纳,获得10
9秒前
wanci应助奋斗向南采纳,获得10
10秒前
10秒前
大鼻子发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
糖豆发布了新的文献求助10
13秒前
打打应助123采纳,获得10
15秒前
15秒前
princesun083发布了新的文献求助10
15秒前
江屿应助huan采纳,获得10
16秒前
16秒前
星辰大海应助默默采纳,获得10
16秒前
毛头侠发布了新的文献求助10
16秒前
丘比特应助小飞侠来咯采纳,获得10
17秒前
fufusb发布了新的文献求助10
17秒前
欣欣发布了新的文献求助10
17秒前
小蘑菇应助大鼻子采纳,获得10
18秒前
Eliauk发布了新的文献求助10
19秒前
19秒前
奋斗向南发布了新的文献求助10
21秒前
ED应助DChen采纳,获得10
21秒前
司空元正完成签到 ,获得积分10
21秒前
lijingyi发布了新的文献求助10
22秒前
欣欣完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063429
求助须知:如何正确求助?哪些是违规求助? 3601849
关于积分的说明 11439157
捐赠科研通 3324957
什么是DOI,文献DOI怎么找? 1827906
邀请新用户注册赠送积分活动 898422
科研通“疑难数据库(出版商)”最低求助积分说明 819026