Radiomics-based Machine Learning Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Using Physiologically Decomposed Diffusion-weighted MRI.

无线电技术 磁共振弥散成像 乳腺癌 医学 化疗 人工智能 计算机科学 放射科 癌症 磁共振成像 机器学习 内科学
作者
Maya Gilad,Savannah C. Partridge,Mami Iima,Rebecca Rakow‐Penner,Moti Freiman
出处
期刊:PubMed 卷期号:7 (4): e240312-e240312
标识
DOI:10.1148/rycan.240312
摘要

Purpose To evaluate the performance of a machine learning model developed using radiomics data derived from physiologically decomposed diffusion-weighted MRI data for predicting pathologic complete response (pCR) following neoadjuvant chemotherapy for breast cancer compared with baseline and benchmark models. Materials and Methods This retrospective study included data from the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge dataset, comprising longitudinal multiparametric breast MRI studies (diffusion-weighted imaging [DWI] and dynamic contrast-enhanced MRI) from participants enrolled in the I-SPY 2/ACRIN 6698 trial (ClinicalTrials.gov: NCT01042379). Piecewise linear physiologic decomposition was applied to DWI data (PD DWI) to isolate pseudo-diffusion, pure-diffusion, and pseudo-diffusion fraction components for radiomics feature extraction. These features were used to develop a boosted decision tree model to predict pCR following neoadjuvant chemotherapy. Model performance was compared with performance of baseline models, including data on tumor size and mean apparent diffusion coefficient, and the BMMR2 challenge benchmark model using area under the receiver operating characteristic curve, F1 score, and positive and negative predictive values. Model calibration was assessed via the Brier score, and a decision curve analysis was performed to estimate the potential reduction in unnecessary interventions when using the proposed model. Results The study included multiparametric MRI scans from 190 female participants (mean age ± SD, 48.4 years ± 10.5). PD DWI achieved the highest area under the receiver operating characteristic curve (0.89, 95% CI: 0.81, 0.96) among all evaluated models, demonstrating statistically significant improvements over baseline approaches (all P < .04). Decision curve analysis showed that the PD DWI model provided a greater net benefit compared with the BMMR2 challenge benchmark model (0.17, 95% CI: 0.13, 0.21 vs 0.09, 95% CI: 0.05, 0.13; P < .001). Conclusion A machine learning model using radiomics data derived from PD DWI achieved higher performance than baseline and benchmark models in predicting pCR following neoadjuvant chemotherapy for breast cancer. Keywords: Image Postprocessing, MR-Diffusion Weighted Imaging, Breast, Tumor Response, Experimental Investigations ClinicalTrials.gov: NCT01042379 © RSNA, 2025.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12138发布了新的文献求助10
刚刚
刚刚
酆百川完成签到,获得积分10
刚刚
皮皮虾完成签到,获得积分10
刚刚
仓鼠球完成签到,获得积分10
1秒前
缥缈的初阳完成签到,获得积分10
1秒前
1秒前
努力向上的小刘完成签到,获得积分10
2秒前
光芒万丈发布了新的文献求助10
2秒前
WENc完成签到,获得积分10
2秒前
向雅完成签到,获得积分10
2秒前
刘明发布了新的文献求助10
2秒前
巧巧艾完成签到,获得积分10
3秒前
大卓神完成签到,获得积分10
4秒前
4秒前
樱铃完成签到,获得积分10
5秒前
5秒前
丘比特应助Agnesma采纳,获得10
6秒前
曲小晴完成签到,获得积分10
6秒前
大卓神发布了新的文献求助10
6秒前
jinkk完成签到,获得积分10
7秒前
晚晚完成签到 ,获得积分10
7秒前
随风走完成签到,获得积分10
7秒前
2Y_DADA完成签到,获得积分10
8秒前
jianhua完成签到,获得积分10
8秒前
lucky发布了新的文献求助10
8秒前
8秒前
8秒前
听话的代芙完成签到 ,获得积分10
9秒前
清爽的盼曼完成签到,获得积分10
9秒前
10秒前
思绪摸摸头完成签到 ,获得积分10
10秒前
阔达如柏完成签到,获得积分10
11秒前
凯旋侯完成签到,获得积分10
12秒前
exquisite完成签到,获得积分10
12秒前
13秒前
带线一去不回完成签到,获得积分10
13秒前
hamster发布了新的文献求助10
13秒前
慕青应助丨歪比巴卜丨采纳,获得10
14秒前
HanhanNing发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Geography : the study of location, culture, and environment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4345349
求助须知:如何正确求助?哪些是违规求助? 3851977
关于积分的说明 12022930
捐赠科研通 3493543
什么是DOI,文献DOI怎么找? 1916987
邀请新用户注册赠送积分活动 959942
科研通“疑难数据库(出版商)”最低求助积分说明 860030