Molecular dynamics simulation of Au-Ag nanowires under tensile loading

分子动力学 纳米线 位错 材料科学 极限抗拉强度 径向分布函数 应变率 消灭 纳米技术 复合材料 凝聚态物理 化学 物理 计算化学 量子力学
作者
Yi Liao,Peitao Li,Jiaxin Jia,Tiejun Tao,Jun Chen,Meizhen Xiang
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:220: 112043-112043 被引量:5
标识
DOI:10.1016/j.commatsci.2023.112043
摘要

With the progress of nanotechnology, the application of functionally gradient materials (FGMs) has shifted from traditional applications to complex micro nano electronic and energy conversion devices. Therefore, it is very important to study the mechanics of different FGMs nanostructures for exploring the feasibility of their different applications. In this study, we used molecular dynamics (MD) simulation to study the mechanical properties of Au-Ag functionally graded nanowires (NWs) with radial gradient distribution. For the FGMs NWs considered, the radial distribution of Au-Ag alloy follows power function, exponential function and S-shaped function. Our results show that the distribution function parameters play an important role in adjusting the mechanical properties (elastic modulus and ultimate tensile strength) of FGMs. The study also shows that the power function and exponential function have a great influence on the mechanical properties of materials, and the S-shaped function has a relatively small influence than the other two functions. In addition, we found that the time to reach the peak value of total dislocation length lags behind the time to reach the ultimate tensile strength, and the dislocation density is unevenly distributed throughout the system. In the subsequent process of dislocation annihilation, the dislocation annihilation is more obvious in the region with higher dislocation density. Moreover, we consider the effect of strain rate on the crystal structure change of FGMs NWs. At low strain rate, the transformation of crystal structure type is reversible. With the increase of strain rate, this reversible trend gradually decreases until reversible change phenomenon no longer occurs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3237924531完成签到,获得积分10
3秒前
5秒前
mawanyu完成签到 ,获得积分10
7秒前
开庆完成签到,获得积分10
7秒前
10秒前
10秒前
zzz完成签到,获得积分10
10秒前
酷波er应助单纯的雅香采纳,获得10
11秒前
13秒前
xiaochuan完成签到,获得积分10
15秒前
老奈发布了新的文献求助10
15秒前
16秒前
唐飒完成签到,获得积分10
17秒前
18秒前
fanicky完成签到,获得积分10
19秒前
CZF完成签到 ,获得积分10
20秒前
欢呼毛豆完成签到,获得积分10
21秒前
烟雨平生完成签到,获得积分10
21秒前
23秒前
Reeee完成签到 ,获得积分10
24秒前
哎哟可爱完成签到,获得积分10
24秒前
传奇3应助yao采纳,获得10
26秒前
大模型应助善良的朝雪采纳,获得10
28秒前
QR发布了新的文献求助10
28秒前
科研通AI5应助王者归来采纳,获得10
30秒前
fabricio10完成签到,获得积分10
30秒前
研友_VZG7GZ应助Yiding采纳,获得10
31秒前
自信鑫鹏完成签到,获得积分10
32秒前
33秒前
36秒前
cdercder应助fabricio10采纳,获得10
36秒前
华理附院孙文博完成签到 ,获得积分10
40秒前
安白发布了新的文献求助10
41秒前
潇洒的白凝完成签到,获得积分10
43秒前
43秒前
和谐面包完成签到,获得积分10
48秒前
51秒前
52秒前
52秒前
垃圾的摆设完成签到,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323655
关于积分的说明 10215320
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339