Feature subset selection using multimodal multiobjective differential evolution

计算机科学 差异进化 初始化 特征选择 特征向量 公制(单位) 趋同(经济学) 特征(语言学) 人工智能 选择(遗传算法) 模式识别(心理学) 数据挖掘 算法 语言学 哲学 运营管理 经济 程序设计语言 经济增长
作者
Suchitra Agrawal,Aruna Tiwari,Bhaskar Yaduvanshi,Prashant Rajak
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:265: 110361-110361 被引量:13
标识
DOI:10.1016/j.knosys.2023.110361
摘要

The main aim of feature subset selection is to find the minimum number of required features to perform classification without affecting the accuracy. It is one of the useful real-world applications for different types of classification datasets. Different feature subsets may achieve similar classification accuracy, which can help the user to select the optimal features. There are two main objectives involved in selecting a feature subset: minimizing the number of features and maximizing the accuracy. However, most of the existing studies do not consider multiple feature subsets of the same size. In this paper, we have proposed an algorithm for multimodal multiobjective optimization based on differential evolution with respect to the feature subset selection problem. We have proposed the probability initialization method to identify the selected features with equal distribution in the search space. We have also proposed a niching technique to explore the search space and exploit the nearby solutions. Further, we have proposed a convergence archive to locate and store the optimal feature subsets. Exhaustive experimentation has been conducted on different datasets with varying characteristics to identify multiple feature subsets. We have also proposed an evaluation metric for the quantitative comparison of the proposed algorithm with the existing algorithms. Results have also been compared with existing algorithms in the objective space and in terms of classification accuracy, which shows the effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
pcr163应助咻咻采纳,获得50
1秒前
cctoday完成签到,获得积分10
1秒前
1秒前
搞怪不斜完成签到,获得积分20
1秒前
hqq116发布了新的文献求助10
2秒前
CR7应助可靠的南露采纳,获得10
3秒前
大海完成签到,获得积分10
3秒前
隐形曼青应助姜酱酱酱采纳,获得10
4秒前
leiztar完成签到,获得积分10
4秒前
有一颗卤蛋完成签到,获得积分10
4秒前
4秒前
鹿梦完成签到,获得积分10
4秒前
5秒前
sunflower完成签到,获得积分0
5秒前
linda268完成签到,获得积分10
5秒前
丘比特应助rayqiang采纳,获得10
5秒前
SYLH应助暖粥采纳,获得10
5秒前
5秒前
1234567890完成签到,获得积分10
6秒前
隐形荟完成签到 ,获得积分10
6秒前
格物致知发布了新的文献求助30
6秒前
小树完成签到 ,获得积分10
6秒前
爱笑的蘑菇完成签到,获得积分10
6秒前
6秒前
7秒前
Lee发布了新的文献求助10
8秒前
9秒前
西柚完成签到,获得积分10
9秒前
sunshine完成签到,获得积分10
9秒前
ZZ完成签到,获得积分10
10秒前
jingdaitianxiang完成签到 ,获得积分10
10秒前
xiaorang完成签到,获得积分10
10秒前
10秒前
10秒前
闵不悔完成签到,获得积分10
11秒前
yy完成签到,获得积分10
11秒前
1234567890发布了新的文献求助10
11秒前
妮妮完成签到,获得积分10
11秒前
康康发布了新的文献求助10
11秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4048931
求助须知:如何正确求助?哪些是违规求助? 3586737
关于积分的说明 11397162
捐赠科研通 3313401
什么是DOI,文献DOI怎么找? 1822795
邀请新用户注册赠送积分活动 894736
科研通“疑难数据库(出版商)”最低求助积分说明 816471