质量细胞仪
肿瘤异质性
背景(考古学)
免疫系统
肺癌
腺癌
生物
肿瘤微环境
细胞
病理
癌症
医学
表型
免疫学
基因
古生物学
生物化学
遗传学
作者
Mark Sorin,Morteza Rezanejad,Elham Karimi,Benoit Fiset,Lysanne Desharnais,Lucas J. M. Perus,Simon Milette,Miranda W. Yu,Sarah M. Maritan,Samuel Doré,Émilie Pichette,William Enlow,Andréanne Gagné,Yuhong Wei,Michele Orain,Venkata Manem,Roni Rayes,Peter M. Siegel,Sophie Camilleri‐Broët,Pierre Fiset
出处
期刊:Nature
[Springer Nature]
日期:2023-02-01
卷期号:614 (7948): 548-554
被引量:332
标识
DOI:10.1038/s41586-022-05672-3
摘要
Abstract Single-cell technologies have revealed the complexity of the tumour immune microenvironment with unparalleled resolution 1–9 . Most clinical strategies rely on histopathological stratification of tumour subtypes, yet the spatial context of single-cell phenotypes within these stratified subgroups is poorly understood. Here we apply imaging mass cytometry to characterize the tumour and immunological landscape of samples from 416 patients with lung adenocarcinoma across five histological patterns. We resolve more than 1.6 million cells, enabling spatial analysis of immune lineages and activation states with distinct clinical correlates, including survival. Using deep learning, we can predict with high accuracy those patients who will progress after surgery using a single 1-mm 2 tumour core, which could be informative for clinical management following surgical resection. Our dataset represents a valuable resource for the non-small cell lung cancer research community and exemplifies the utility of spatial resolution within single-cell analyses. This study also highlights how artificial intelligence can improve our understanding of microenvironmental features that underlie cancer progression and may influence future clinical practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI