Automatic classification of arrhythmias using multi-branch convolutional neural networks based on channel-based attention and bidirectional LSTM

计算机科学 卷积神经网络 深度学习 人工智能 心跳 模式识别(心理学) 心律失常 人工神经网络 室上性心律失常 语音识别 心脏病学 医学 心房颤动 计算机安全
作者
Fengqing Liu,Huaidong Li,Teng Wu,Hong Lin,Chenyu Lin,Guoqiang Han
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:138: 397-407 被引量:9
标识
DOI:10.1016/j.isatra.2023.02.028
摘要

Cardiac arrhythmia is an abnormal rhythm of the heartbeat and can be life-threatening Electrocardiogram (ECG) is a technology that uses an electrocardiograph machine to record a graph of the changes in electrical activity produced by the heart at each cardiac cycle. ECG can generally be used to check whether the examinee has arrhythmia, ion channel disease, cardiomyopathy, electrolyte disorder and other diseases. To reduce the workload of doctors and improve the accuracy of ECG signal recognition, a novel and lightweight automatic ECG classification method based on Convolutional Neural Network (CNN) is proposed. The multi-branch network with different receptive fields is used to extract the multi-spatial deep features of heartbeats. The Channel Attention Module (CAM) and Bidirectional Long Short-Term Memory neural network (BLSTM) module are used to filter redundant ECG features. CAM and BLSTM are beneficial for distinguishing different categories of heartbeats. In the experiments, a four-fold cross-validation technique is used to improve the generalization capability of the network, and it shows good performance on the testing set. This method divides heartbeats into five categories according to the American Advancement of Medical Instrumentation (AAMI) criteria, which is validated in the MIT-BIH arrhythmia database. The sensitivity of this method to Ventricular Ectopic Beat (VEB) is 98.5% and the F1 score is 98.2%. The precision of the Supraventricular Ectopic Beat (SVEB) is 91.1%, and the corresponding F1 score is 90.8%. The proposed method has high classification performance and a lightweight feature. In a word, it has broad application prospects in clinical medicine and health testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hdy331完成签到,获得积分10
刚刚
wrf3发布了新的文献求助50
1秒前
田様应助LLLLLLL采纳,获得10
1秒前
在这种完成签到,获得积分10
1秒前
左佐发布了新的文献求助10
3秒前
性感母蟑螂完成签到 ,获得积分10
3秒前
4秒前
洛苓轩发布了新的文献求助30
4秒前
5秒前
罐罐完成签到,获得积分10
5秒前
就叫柠檬吧应助风中夜天采纳,获得10
5秒前
5秒前
答题不卡发布了新的文献求助10
5秒前
安详的未来完成签到,获得积分10
6秒前
6秒前
Newky发布了新的文献求助10
7秒前
9秒前
科研通AI5应助一一采纳,获得10
9秒前
123发布了新的文献求助10
11秒前
totowolf发布了新的文献求助10
11秒前
13秒前
今天也没有昵称完成签到 ,获得积分10
15秒前
15秒前
搜集达人应助wjr采纳,获得10
16秒前
16秒前
祭酒完成签到 ,获得积分10
16秒前
17秒前
17秒前
汉堡包应助wocao采纳,获得10
17秒前
totowolf完成签到,获得积分10
18秒前
华仔应助mayue采纳,获得10
18秒前
CodeCraft应助秀丽的大门采纳,获得10
18秒前
卡卡西应助电动泡泡机采纳,获得20
19秒前
tttttz发布了新的文献求助20
20秒前
21秒前
科研通AI5应助左佐采纳,获得10
22秒前
KPJYW发布了新的文献求助10
22秒前
完美夜云完成签到 ,获得积分10
22秒前
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801800
求助须知:如何正确求助?哪些是违规求助? 3347588
关于积分的说明 10334363
捐赠科研通 3063747
什么是DOI,文献DOI怎么找? 1682067
邀请新用户注册赠送积分活动 807893
科研通“疑难数据库(出版商)”最低求助积分说明 763960