Enhanced Multi-Task Learning and Knowledge Graph-Based Recommender System

计算机科学 推荐系统 任务(项目管理) 图形 关系(数据库) 人工智能 嵌入 情报检索 机器学习 理论计算机科学 数据挖掘 经济 管理
作者
Min Gao,Jian-Yu Li,Chunhua Chen,Yun Li,Jun Zhang,Zhi‐Hui Zhan
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 10281-10294 被引量:84
标识
DOI:10.1109/tkde.2023.3251897
摘要

In recent years, the m ulti-task learning for k nowledge graph-based r ecommender system, termed MKR, has shown its promising performance and has attracted increasing interest, because a recommendation task and a knowledge graph embedding (KGE) task can help each other to improve the recommendation. However, MKR still has two difficult issues. The first is how fully to capture users' historical behavior pattern in the recommendation task and how fully to utilize deep multi-relation semantic information in the KGE task. The second is how to deal with datasets with different sparsity. Tackling these challenging issues, this paper proposes an enhanced MKR (EMKR) approach with two novelties. First, we propose to utilize the attention mechanism to aggregate users' historical behavior for more accurately mining preferences in the recommendation task, and utilize the relation-aware graph convolutional neural network to fully capture the deep multi-relation neighborhood features in the KGE task, so as to address the first issue. Second, a two-part modeling strategy is proposed for a better representation of users in the recommendation task to expand the expressive ability of the model for adapting to datasets with different sparsity, so as to address the second issue. Extensive experiments are conducted on widely-used datasets and 11 approaches are used for comparison. The results show that the proposed EMKR can achieve substantial gains over the compared state-of-the-art approaches, especially in the situation where user-item interactions are sparse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CodeCraft应助dimples采纳,获得10
1秒前
会飞的鱼完成签到 ,获得积分10
1秒前
11完成签到,获得积分20
2秒前
2秒前
3秒前
shsdkl完成签到,获得积分10
3秒前
5秒前
科研通AI6应助甜蜜乐松采纳,获得10
5秒前
6秒前
6秒前
7秒前
guanshujuan发布了新的文献求助10
8秒前
科研通AI6应助zhf采纳,获得10
8秒前
bkagyin应助yaaaaajie采纳,获得10
8秒前
freeze完成签到,获得积分10
8秒前
Orange应助dimples采纳,获得10
9秒前
赘婿应助方法采纳,获得10
9秒前
9秒前
10秒前
满意的小鸽子完成签到,获得积分10
10秒前
憨憨完成签到,获得积分20
10秒前
天天快乐应助美汁源采纳,获得10
11秒前
大个应助美汁源采纳,获得10
11秒前
11秒前
Lesile完成签到,获得积分10
12秒前
小抱枕完成签到,获得积分20
12秒前
14秒前
憨憨发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助rrrrr采纳,获得10
15秒前
Owen应助害羞鬼采纳,获得10
15秒前
Wnn发布了新的文献求助10
15秒前
科研通AI6应助jiang采纳,获得10
16秒前
ZeKaWa应助初见采纳,获得10
17秒前
17秒前
17秒前
英俊溪灵发布了新的文献求助10
19秒前
滴滴答答发布了新的文献求助10
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621624
求助须知:如何正确求助?哪些是违规求助? 4706286
关于积分的说明 14936136
捐赠科研通 4766129
什么是DOI,文献DOI怎么找? 2551751
邀请新用户注册赠送积分活动 1514167
关于科研通互助平台的介绍 1474850