Enhanced Multi-Task Learning and Knowledge Graph-Based Recommender System

计算机科学 推荐系统 任务(项目管理) 图形 关系(数据库) 人工智能 嵌入 情报检索 机器学习 理论计算机科学 数据挖掘 经济 管理
作者
Min Gao,Jian-Yu Li,Chunhua Chen,Yun Li,Jun Zhang,Zhi‐Hui Zhan
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (10): 10281-10294 被引量:43
标识
DOI:10.1109/tkde.2023.3251897
摘要

In recent years, the m ulti-task learning for k nowledge graph-based r ecommender system, termed MKR, has shown its promising performance and has attracted increasing interest, because a recommendation task and a knowledge graph embedding (KGE) task can help each other to improve the recommendation. However, MKR still has two difficult issues. The first is how fully to capture users' historical behavior pattern in the recommendation task and how fully to utilize deep multi-relation semantic information in the KGE task. The second is how to deal with datasets with different sparsity. Tackling these challenging issues, this paper proposes an enhanced MKR (EMKR) approach with two novelties. First, we propose to utilize the attention mechanism to aggregate users' historical behavior for more accurately mining preferences in the recommendation task, and utilize the relation-aware graph convolutional neural network to fully capture the deep multi-relation neighborhood features in the KGE task, so as to address the first issue. Second, a two-part modeling strategy is proposed for a better representation of users in the recommendation task to expand the expressive ability of the model for adapting to datasets with different sparsity, so as to address the second issue. Extensive experiments are conducted on widely-used datasets and 11 approaches are used for comparison. The results show that the proposed EMKR can achieve substantial gains over the compared state-of-the-art approaches, especially in the situation where user-item interactions are sparse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Atlantic完成签到,获得积分10
4秒前
XIXI完成签到,获得积分10
5秒前
玛璃鸶完成签到,获得积分10
5秒前
5秒前
Hello应助左丘蛟凤采纳,获得30
6秒前
我十分讨厌你完成签到,获得积分10
7秒前
10秒前
11秒前
12秒前
16秒前
刘威远应助健康的妙菱采纳,获得10
16秒前
顺利绮烟发布了新的文献求助10
17秒前
houyan发布了新的文献求助10
17秒前
William_l_c发布了新的文献求助10
18秒前
领导范儿应助难过冷玉采纳,获得10
18秒前
19秒前
ccm发布了新的文献求助10
24秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
CR7应助科研通管家采纳,获得20
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
大方青应助科研通管家采纳,获得10
27秒前
无花果应助科研通管家采纳,获得10
27秒前
李爱国应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
思源应助科研通管家采纳,获得10
27秒前
CR7应助科研通管家采纳,获得20
27秒前
Owen应助科研通管家采纳,获得10
27秒前
Jasper应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
所所应助in采纳,获得20
28秒前
妮儿发布了新的文献求助20
29秒前
30秒前
烯烃完成签到,获得积分10
35秒前
勤恳缘分发布了新的文献求助10
36秒前
36秒前
田様应助houyan采纳,获得10
36秒前
荔枝吖完成签到,获得积分20
39秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Implantable Technologies 500
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3918929
求助须知:如何正确求助?哪些是违规求助? 3464314
关于积分的说明 10931983
捐赠科研通 3192329
什么是DOI,文献DOI怎么找? 1764121
邀请新用户注册赠送积分活动 854674
科研通“疑难数据库(出版商)”最低求助积分说明 794386