PASS: Test-Time Prompting to Adapt Styles and Semantic Shapes in Medical Image Segmentation

计算机科学 图像分割 计算机视觉 分割 人工智能 图像(数学) 医学影像学 考试(生物学) 生物 古生物学
作者
Chuyan Zhang,Hao Zheng,Xin You,Yefeng Zheng,Yun Gu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3521463
摘要

Test-time adaptation (TTA) has emerged as a promising paradigm to handle the domain shifts at test time for medical images from different institutions without using extra training data. However, existing TTA solutions for segmentation tasks suffer from (1) dependency on modifying the source training stage and access to source priors or (2) lack of emphasis on shape-related semantic knowledge that is crucial for segmentation tasks. Recent research on visual prompt learning achieves source-relaxed adaptation by extended parameter space but still neglects the full utilization of semantic features, thus motivating our work on knowledge-enriched deep prompt learning. Beyond the general concern of image style shifts, we reveal that shape variability is another crucial factor causing the performance drop. To address this issue, we propose a TTA framework called PASS (Prompting to Adapt Styles and Semantic shapes), which jointly learns two types of prompts: the input-space prompt to reformulate the style of the test image to fit into the pretrained model and the semantic-aware prompts to bridge high-level shape discrepancy across domains. Instead of naively imposing a fixed prompt, we introduce an input decorator to generate the self-regulating visual prompt conditioned on the input data. To retrieve the knowledge representations and customize target-specific shape prompts for each test sample, we propose a cross-attention prompt modulator, which performs interaction between target representations and an enriched shape prompt bank. Extensive experiments demonstrate the superior performance of PASS over state-of-the-art methods on multiple medical image segmentation datasets. The code is available at https://github.com/EndoluminalSurgicalVision-IMR/PASS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘潘发布了新的文献求助10
刚刚
1秒前
NexusExplorer应助RNNNLL采纳,获得10
1秒前
居北完成签到,获得积分10
1秒前
2秒前
2秒前
JUGG应助xiaojingyang0802采纳,获得10
2秒前
科研通AI5应助芥楠采纳,获得10
3秒前
英俊的铭应助wangxw采纳,获得10
3秒前
3秒前
3秒前
4秒前
junze完成签到,获得积分10
5秒前
min134340发布了新的文献求助10
5秒前
熊仔一百完成签到,获得积分10
5秒前
呆啊完成签到,获得积分10
5秒前
wwx发布了新的文献求助10
5秒前
5秒前
chaichai发布了新的文献求助10
6秒前
令狐梦柏发布了新的文献求助10
6秒前
7秒前
鉨汏闫发布了新的文献求助10
7秒前
7秒前
Hydro发布了新的文献求助10
8秒前
程雯慧发布了新的文献求助10
8秒前
包容凌翠完成签到,获得积分20
8秒前
不懂白完成签到,获得积分10
9秒前
gaoww完成签到,获得积分10
10秒前
尘间雪完成签到,获得积分10
10秒前
guyu发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI5应助令狐梦柏采纳,获得10
11秒前
李健应助哦哦哦采纳,获得10
11秒前
科研通AI5应助Qihuaqing采纳,获得10
11秒前
fat完成签到,获得积分10
11秒前
white完成签到,获得积分10
11秒前
11秒前
11秒前
JamesPei应助wwx采纳,获得10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789164
求助须知:如何正确求助?哪些是违规求助? 3334289
关于积分的说明 10268778
捐赠科研通 3050705
什么是DOI,文献DOI怎么找? 1674102
邀请新用户注册赠送积分活动 802497
科研通“疑难数据库(出版商)”最低求助积分说明 760657