Research on the Accuracy of Machine Translation in Cross-Cultural Communication Based on Embedded Neural Networks

翻译(生物学) 人工神经网络 机器翻译 计算机科学 人工智能 生物化学 化学 信使核糖核酸 基因
作者
Han Qi
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s0129156425401251
摘要

The introduction of embedded neural network technology marks a significant leap forward in machine translation technology. This technology not only simulates the complex learning and understanding mechanisms of the human brain but also achieves precise capture and conversion of subtle differences and deep meanings in language through continuous algorithm optimization and iteration. This study mainly focuses on the accuracy of machine translation in cross-cultural communication using embedded neural network technology. Our aim is to explore in depth the potential of this advanced technology in overcoming language barriers, improving cross-cultural communication efficiency and quality. The study emphasizes the importance of deeply integrating machine translation technology with cross-cultural communication theory. Compared with traditional rule-based machine translation methods, embedded neural networks can better handle the complexity and diversity of language, reduce human set limitations and errors, and significantly improve translation accuracy. Through an interdisciplinary research perspective, the aim is to gain a deeper understanding of the unique habits, communication norms, and potential cultural differences in language use across different cultural backgrounds, in order to provide more accurate cultural context support for machine translation systems. This combination not only helps to improve the quality of translation, but also promotes mutual understanding and respect between cultures, contributing to the construction of a more harmonious and inclusive cross-cultural communication environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nichols完成签到,获得积分10
刚刚
刚刚
1秒前
S1008发布了新的文献求助10
1秒前
2秒前
2秒前
顾矜应助七月流火采纳,获得10
2秒前
3秒前
3秒前
4秒前
fang完成签到 ,获得积分10
6秒前
一只虎子完成签到,获得积分10
6秒前
wyh完成签到,获得积分10
7秒前
wjx完成签到 ,获得积分10
7秒前
天天浇水发布了新的文献求助10
8秒前
狗熊也应助luerjiang采纳,获得10
9秒前
9秒前
小柯发布了新的文献求助10
10秒前
Owen应助二狗儿采纳,获得10
11秒前
易烊干洗发布了新的文献求助10
12秒前
十一关注了科研通微信公众号
12秒前
lzd完成签到,获得积分10
14秒前
jiangmj1990发布了新的文献求助10
14秒前
16秒前
17秒前
19秒前
大模型应助木木采纳,获得10
20秒前
jiangmj1990完成签到,获得积分10
21秒前
烛黎完成签到,获得积分10
21秒前
ding应助群青采纳,获得10
21秒前
zmd完成签到,获得积分10
22秒前
小柯完成签到,获得积分20
22秒前
七月流火发布了新的文献求助10
23秒前
景绝义发布了新的文献求助10
23秒前
23秒前
chengbin完成签到,获得积分10
24秒前
Ran完成签到 ,获得积分10
24秒前
ahxb发布了新的文献求助10
25秒前
无花果应助lizhiqian2024采纳,获得10
25秒前
善学以致用应助lizhiqian2024采纳,获得10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805206
求助须知:如何正确求助?哪些是违规求助? 3350214
关于积分的说明 10347750
捐赠科研通 3066060
什么是DOI,文献DOI怎么找? 1683511
邀请新用户注册赠送积分活动 809039
科研通“疑难数据库(出版商)”最低求助积分说明 765205