控制理论(社会学)
终端滑动模式
人工神经网络
终端(电信)
国家观察员
跟踪(教育)
观察员(物理)
计算机科学
国家(计算机科学)
模式(计算机接口)
曲面(拓扑)
滑模控制
数学
人工智能
物理
控制(管理)
非线性系统
算法
心理学
几何学
操作系统
电信
教育学
量子力学
作者
Xingmin Wang,Ruixue Liu,Aleksander Sładkowski,Qian Li,Ru Jiang
出处
期刊:Intelligence & robotics
[OAE Publishing Inc.]
日期:2024-12-14
卷期号:4 (4): 439-56
摘要
This paper presents a novel trajectory tracking controller for an underactuated unmanned surface vehicle (USV). The controller incorporates an event-triggered extended state observer (ETESO), a minimum learning parameter neural network, an integral non-singular terminal sliding mode (INTSM) control strategy, and a dynamic event-triggered mechanism (DETM). Firstly, an ETESO is developed to estimate unmeasurable velocities and lumped disturbances, differentiating it from most existing extended state observers without the necessity for real-time output measurements. To further alleviate the communication burden and minimize actuator wear, a DETM with an adjustable threshold is introduced. In contrast to traditional event-triggered methods, which employ fixed threshold parameters, this mechanism allows for online adaptive updates of the triggering thresholds, thereby enhancing resource efficiency. Additionally, an INTSM is designed to ensure rapid convergence of the position and velocity errors of the USV. To effectively counteract external disturbances and internal modeling uncertainties, a minimum learning parameter (MLP) neural network algorithm is implemented to approximate and compensate for these uncertainties. Finally, using Lyapunov's theory, it is demonstrated that all signals within the closed-loop tracking control system remain bounded. Simulation results are given to illustrate the effectiveness of theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI