The Mean-Field Ensemble Kalman Filter: Near-Gaussian Setting

卡尔曼滤波器 数学 集合卡尔曼滤波器 高斯分布 扩展卡尔曼滤波器 统计 应用数学 物理 量子力学
作者
José A. Carrillo,Franca Hoffmann,A. M. Stuart,Urbain Vaes
出处
期刊:SIAM Journal on Numerical Analysis [Society for Industrial and Applied Mathematics]
卷期号:62 (6): 2549-2587 被引量:2
标识
DOI:10.1137/24m1628207
摘要

.The ensemble Kalman filter is widely used in applications because, for high-dimensional filtering problems, it has a robustness that is not shared, for example, by the particle filter; in particular, it does not suffer from weight collapse. However, there is no theory which quantifies its accuracy as an approximation of the true filtering distribution, except in the Gaussian setting. To address this issue, we provide the first analysis of the accuracy of the ensemble Kalman filter beyond the Gaussian setting. We prove two types of results: The first type comprises a stability estimate controlling the error made by the ensemble Kalman filter in terms of the difference between the true filtering distribution and a nearby Gaussian, and the second type uses this stability result to show that, in a neighborhood of Gaussian problems, the ensemble Kalman filter makes a small error in comparison with the true filtering distribution. Our analysis is developed for the mean-field ensemble Kalman filter. We rewrite the update equations for this filter and for the true filtering distribution in terms of maps on probability measures. We introduce a weighted total variation metric to estimate the distance between the two filters, and we prove various stability estimates for the maps defining the evolution of the two filters in this metric. Using these stability estimates, we prove results of the first and second types in the weighted total variation metric. We also provide a generalization of these results to the Gaussian projected filter, which can be viewed as a mean-field description of the unscented Kalman filter.Keywordsensemble Kalman filterstochastic filteringweighted total variation metricstability estimatesaccuracy estimatesnear-Gaussian settingMSC codes60G3562F1565C3570F4593E11

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助骨科采纳,获得10
刚刚
阳光下的味道完成签到,获得积分10
刚刚
ustina完成签到,获得积分10
刚刚
彭于彦祖应助雪山飞龙采纳,获得50
刚刚
大大骁晓完成签到,获得积分10
刚刚
focus完成签到 ,获得积分10
刚刚
倚宫完成签到,获得积分10
1秒前
倩倩完成签到 ,获得积分10
1秒前
123完成签到,获得积分10
1秒前
淳于安筠完成签到,获得积分10
1秒前
璇子发布了新的文献求助10
2秒前
陈晨完成签到 ,获得积分10
3秒前
摸鱼校尉完成签到,获得积分0
3秒前
MWSURE完成签到,获得积分10
4秒前
Guoshibo发布了新的文献求助20
4秒前
4秒前
清脆怜寒完成签到,获得积分10
5秒前
朝气完成签到,获得积分10
5秒前
慕山完成签到 ,获得积分10
6秒前
刘运丽完成签到,获得积分10
6秒前
在水一方应助gdh采纳,获得10
6秒前
6秒前
CipherSage应助娜行采纳,获得10
6秒前
zqx完成签到,获得积分10
7秒前
澹台灭明发布了新的文献求助10
7秒前
bkagyin应助xuan采纳,获得10
7秒前
www268完成签到 ,获得积分10
7秒前
dy1994完成签到,获得积分10
8秒前
AFF完成签到,获得积分10
8秒前
njzhangyanyang完成签到,获得积分10
8秒前
璇子完成签到,获得积分10
9秒前
fvsuar完成签到,获得积分10
9秒前
lqq的一家之主完成签到,获得积分10
9秒前
MZ完成签到,获得积分0
10秒前
10秒前
六初完成签到 ,获得积分10
10秒前
苗条的凝梦完成签到,获得积分10
11秒前
傲娇的寄容完成签到,获得积分10
11秒前
文静的听荷完成签到 ,获得积分10
11秒前
暖羊羊Y完成签到 ,获得积分10
12秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061708
求助须知:如何正确求助?哪些是违规求助? 3600367
关于积分的说明 11433596
捐赠科研通 3323822
什么是DOI,文献DOI怎么找? 1827495
邀请新用户注册赠送积分活动 897956
科研通“疑难数据库(出版商)”最低求助积分说明 818792