The Mean-Field Ensemble Kalman Filter: Near-Gaussian Setting

卡尔曼滤波器 数学 集合卡尔曼滤波器 高斯分布 扩展卡尔曼滤波器 统计 应用数学 物理 量子力学
作者
José A. Carrillo,Franca Hoffmann,A. M. Stuart,Urbain Vaes
出处
期刊:SIAM Journal on Numerical Analysis [Society for Industrial and Applied Mathematics]
卷期号:62 (6): 2549-2587 被引量:2
标识
DOI:10.1137/24m1628207
摘要

.The ensemble Kalman filter is widely used in applications because, for high-dimensional filtering problems, it has a robustness that is not shared, for example, by the particle filter; in particular, it does not suffer from weight collapse. However, there is no theory which quantifies its accuracy as an approximation of the true filtering distribution, except in the Gaussian setting. To address this issue, we provide the first analysis of the accuracy of the ensemble Kalman filter beyond the Gaussian setting. We prove two types of results: The first type comprises a stability estimate controlling the error made by the ensemble Kalman filter in terms of the difference between the true filtering distribution and a nearby Gaussian, and the second type uses this stability result to show that, in a neighborhood of Gaussian problems, the ensemble Kalman filter makes a small error in comparison with the true filtering distribution. Our analysis is developed for the mean-field ensemble Kalman filter. We rewrite the update equations for this filter and for the true filtering distribution in terms of maps on probability measures. We introduce a weighted total variation metric to estimate the distance between the two filters, and we prove various stability estimates for the maps defining the evolution of the two filters in this metric. Using these stability estimates, we prove results of the first and second types in the weighted total variation metric. We also provide a generalization of these results to the Gaussian projected filter, which can be viewed as a mean-field description of the unscented Kalman filter.Keywordsensemble Kalman filterstochastic filteringweighted total variation metricstability estimatesaccuracy estimatesnear-Gaussian settingMSC codes60G3562F1565C3570F4593E11
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
兴忠1完成签到,获得积分10
2秒前
wackykao发布了新的文献求助10
3秒前
4秒前
肚子藤完成签到,获得积分10
4秒前
6秒前
赵凯完成签到,获得积分10
6秒前
Akim应助解洙采纳,获得10
6秒前
6秒前
Hello应助小莨采纳,获得10
7秒前
victor完成签到,获得积分10
7秒前
胡憨憨发布了新的文献求助10
8秒前
你嵙这个期刊没买应助BHM采纳,获得10
8秒前
9秒前
机灵班应助zzzdx采纳,获得10
9秒前
呵呵污应助isyfear采纳,获得10
10秒前
芝士应助wudilaoren采纳,获得10
10秒前
好好好发布了新的文献求助30
10秒前
背背佳永远happy完成签到 ,获得积分10
11秒前
解语花发布了新的文献求助50
11秒前
快乐映秋完成签到,获得积分10
13秒前
可可果完成签到,获得积分10
14秒前
14秒前
卓垚完成签到,获得积分10
14秒前
stac完成签到,获得积分10
16秒前
16秒前
17秒前
酪蛋白磷酸肽完成签到,获得积分10
18秒前
怕黑的向南完成签到,获得积分10
19秒前
超帅沂完成签到,获得积分10
19秒前
jly完成签到,获得积分10
19秒前
20秒前
20秒前
核桃发布了新的文献求助10
21秒前
22秒前
友好听云发布了新的文献求助10
22秒前
啦啦啦啦发布了新的文献求助10
23秒前
神勇朝雪完成签到,获得积分10
26秒前
千尺焰发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300369
求助须知:如何正确求助?哪些是违规求助? 4448262
关于积分的说明 13845572
捐赠科研通 4333969
什么是DOI,文献DOI怎么找? 2379255
邀请新用户注册赠送积分活动 1374403
关于科研通互助平台的介绍 1340056